Nanocircuits are electrical circuits operating on the nanometer scale. This is well into the
quantum realm, where quantum mechanical effects become very important. One
nanometer
330px, Different lengths as in respect to the molecular scale.
The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American and British English spelling differences#-re ...
is equal to 10
−9 meters or a row of 10 hydrogen atoms. With such progressively smaller circuits, more can be fitted on a computer chip. This allows faster and more complex functions using less power. Nanocircuits are composed of three different fundamental components. These are
transistors,
interconnections, and
architecture, all fabricated on the nanometer scale.
Various approaches to nanocircuitry
A variety of proposals have been made to implement nanocircuitry in different forms. These include
Nanowires,
Single-Electron Transistors,
Quantum dot cellular automata
Quantum dot cellular automata (QDCA, sometimes referred to simply as quantum cellular automata, or QCA) are a proposed improvement on conventional computer design (CMOS), which have been devised in analogy to conventional models of cellular auto ...
, and Nanoscale
Crossbar Latches. However, likely nearer-term approaches will involve incorporation of nanomaterials to improve
MOSFETs (metal-oxide-semiconductor field-effect transistors). These currently form the basis of most analog and digital circuit designs, the scaling of which drives
Moore's Law
Moore's law is the observation that the number of transistors in a dense integrated circuit (IC) doubles about every two years. Moore's law is an observation and projection of a historical trend. Rather than a law of physics, it is an empir ...
. A review article covering the MOSFET design and its future was published in 2004 comparing different geometries of MOSFETs under scale reduction and noted that circular cross-section vertical channel FETs are optimal for scale reduction. This configuration is capable of being implemented with a high density using vertical semiconductor cylindrical channels with nanoscale diameters and
Infineon Technologies
Infineon Technologies AG is a German semiconductor manufacturer founded in 1999, when the semiconductor operations of the former parent company Siemens AG were spun off. Infineon has about 50,280 employees and is one of the ten largest semicond ...
and
Samsung have begun research and development in this direction resulting in some basic patents using
nanowires and
carbon nanotubes in MOSFET designs. In an alternative approach,
Nanosys uses solution based deposition and alignment processes to pattern pre-fabricated arrays of nanowires on a substrate to serve as a lateral channel of an FET. While not capable of the same scalability as single nanowire FETs, the use of pre-fabricated multiple nanowires for the channel increases reliability and reduces production costs since large volume printing processes may be used to deposit the nanowires at a lower temperature than conventional fabrication procedures. In addition, due to the lower temperature deposition a wider variety of materials such as polymers may be used as the carrier substrate for the transistors opening the door to flexible electronic applications such as electronic paper, bendable flat panel displays, and wide area solar cells.
Production methods
One of the most fundamental concepts to understanding nanocircuits is the formulation of
Moore’s Law. This concept arose when Intel co-founder Gordon Moore became interested in the cost of transistors and trying to fit more onto one chip. It relates that the number of transistors that can be fabricated on a silicon integrated circuit—and therefore the computing abilities of such a circuit—is doubling every 18 to 24 months. The more transistors one can fit on a circuit, the more computational abilities the computer will have. This is why scientists and engineers are working together to produce these nanocircuits so increasingly more and more transistors will be able to fit onto a chip. Despite how good this may sound, there are many problems that arise when so many transistors are packed together. With circuits being so tiny, they tend to have more problems than larger circuits, more particularly heat - the amount of power applied over a smaller surface area makes heat dissipation difficult, this excess heat will cause errors and can destroy the chip. Nanoscale circuits are more sensitive to temperature changes,
cosmic rays and
electromagnetic interference than today's circuits. As more transistors are packed onto a chip, phenomena such as stray signals on the chip, the need to dissipate the heat from so many closely packed devices, tunneling across insulation barriers due to the small scale, and fabrication difficulties will halt or severely slow progress. There will be a time when the cost of making circuits even smaller will be too much, and the speed of computers will reach a maximum. For this reason, many scientists believe that Moore’s Law will not hold forever and will soon reach a peak, since Moore's law is largely predicated on computational gains caused by improvements in micro-lithographic etching technologies.
In producing these nanocircuits, there are many aspects involved. The first part of their organization begins with transistors. As of right now, most electronics are using silicon-based transistors. Transistors are an integral part of circuits as they control the flow of electricity and transform weak electrical signals to strong ones. They also control electric current as they can turn it on off, or even amplify signals. Circuits now use silicon as a transistor because it can easily be switched between conducting and nonconducting states. However, in
nanoelectronics, transistors might be organic molecules or nanoscale inorganic structures.
Semiconductors
A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
, which are part of transistors, are also being made of organic molecules in the nano state.
The second aspect of nanocircuit organization is interconnection. This involves logical and mathematical operations and the wires linking the transistors together that make this possible. In nanocircuits,
nanotubes and other wires as narrow as one nanometer are used to link transistors together.
Nanowires have been made from carbon nanotubes for a few years. Until a few years ago, transistors and nanowires were put together to produce the circuit. However, scientists have been able to produce a nanowire with transistors in it. In 2004, Harvard University nanotech pioneer Charles Lieber and his team have made a nanowire—10,000 times thinner than a sheet of paper—that contains a string of transistors. Essentially, transistors and nanowires are already pre-wired so as to eliminate the difficult task of trying to connect transistors together with nanowires.
The last part of nanocircuit organization is architecture. This has been explained as the overall way the transistors are interconnected, so that the circuit can plug into a computer or other system and operate independently of the lower-level details. With nanocircuits being so small, they are destined for error and defects. Scientists have devised a way to get around this. Their architecture combines circuits that have redundant
logic gates and interconnections with the ability to reconfigure structures at several levels on a chip. The redundancy lets the circuit identify problems and reconfigure itself so the circuit can avoid more problems. It also allows for errors within the logic gate and still have it work properly without giving a wrong result.
Experimental breakthroughs and potential applications
In 1987, an
IBM research team led by
Bijan Davari demonstrated a
metal–oxide–semiconductor field-effect transistor (MOSFET) with a
10 nm
The following are examples of orders of magnitude for different lengths.
__TOC__
Overview
Detailed list
To help compare different orders of magnitude, the following list describes various lengths between 1.6 \times 10^ metres and 10^ ...
gate oxide thickness, using
tungsten-gate technology.
Multi-gate MOSFET
A multigate device, multi-gate MOSFET or multi-gate field-effect transistor (MuGFET) refers to a metal–oxide–semiconductor field-effect transistor (MOSFET) that has more than one gate on a single transistor. The multiple gates may be control ...
s enabled
scaling
Scaling may refer to:
Science and technology
Mathematics and physics
* Scaling (geometry), a linear transformation that enlarges or diminishes objects
* Scale invariance, a feature of objects or laws that do not change if scales of length, energ ...
below
20 nm
NM, nm, and variations may refer to:
Businesses and organizations
* Northwestern Mutual, financial services company in Wisconsin, United States
* Air Madrid (IATA airline designator NM), Spanish airline
* Mount Cook Airline (IATA airline desig ...
gate length, starting with the
FinFET (fin field-effect transistor), a three-dimensional, non-planar, double-gate MOSFET.
The FinFET originates from the research of Digh Hisamoto at
Hitachi Central Research Laboratory in 1989.
At
UC Berkeley, FinFET devices were fabricated by a group consisting of Hisamoto along with
TSMC's
Chenming Hu and other international researchers including
Tsu-Jae King Liu,
Jeffrey Bokor, Hideki Takeuchi, K. Asano, Jakub Kedziersk, Xuejue Huang, Leland Chang, Nick Lindert, Shibly Ahmed and Cyrus Tabery. The team fabricated FinFET devices down to a
17nm process in 1998, and then
15nm in 2001. In 2002, a team including Yu, Chang, Ahmed, Hu, Liu, Bokor and Tabery fabricated a
10nm FinFET device.
In 2005, Indian physicists Prabhakar Bandaru and Apparao M. Rao at
UC San Diego developed the world's smallest transistor based to be made entirely from
carbon nanotubes. It was intended to be used for nanocircuits.
Nanotubes are rolled up sheets of carbon atoms and are more than a thousand times thinner than human hair. In 2006, a team of Korean researchers from the
Korea Advanced Institute of Science and Technology
The Korea Advanced Institute of Science and Technology (KAIST) is a national research university located in Daedeok Innopolis, Daejeon, South Korea. KAIST was established by the Korean government in 1971 as the nation's first public, research ...
(KAIST) and the National Nano Fab Center developed a
3 nm MOSFET, the world's smallest
nanoelectronic device, based on
gate-all-around
A multigate device, multi-gate MOSFET or multi-gate field-effect transistor (MuGFET) refers to a metal–oxide–semiconductor field-effect transistor (MOSFET) that has more than one gate on a single transistor. The multiple gates may be control ...
(GAA) FinFET technology.
Normally, circuits use
silicon-based transistors, but carbon nanotubes are intended to replace those. The transistor has two different branches that meet at a single point, hence giving it a Y shape. Current can flow throughout both branches and is controlled by a third branch that turns the voltage on or off. This new breakthrough can now allow for nanocircuits to hold completely to their name as they can be made entirely from nanotubes. Before this discovery, logic circuits used nanotubes, but needed metal gates to be able to control the flow of
electric current
An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving pa ...
.
Arguably the biggest potential application of nanocircuits deals with computers and electronics. Scientists and engineers are always looking to make computers faster. Some think in the nearer term, we could see hybrids of
micro- and nano-:
silicon with a nano core—perhaps a high-density computer memory that retains its contents forever. Unlike conventional circuit design, which proceeds from blueprint to photographic pattern to chip, nanocircuit design will probably begin with the chip—a haphazard jumble of as many as 1024 components and wires, not all of which will even work—and gradually sculpt it into a useful device.
[Eds. Scientific American, 94.
] Instead of taking the traditional
top-down
Top-down may refer to:
Arts and entertainment
* " Top Down", a 2007 song by Swizz Beatz
* "Top Down", a song by Lil Yachty from ''Lil Boat 3''
* "Top Down", a song by Fifth Harmony from ''Reflection'' Science
* Top-down reading, is a part of ...
approach, the
bottom-up approach will probably soon have to be adopted because of the sheer size of these nanocircuits. Not everything in the circuit will probably work because at the nano level, nanocircuits will be more defective and faulty because of their compactness. Scientists and engineers have created all of the essential components of nanocircuits such as transistors, logic gates and diodes. They have all been constructed from
organic molecules
In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. The s ...
, carbon nanotubes and nanowire semiconductors. The only thing left to do is find a way to eliminate the errors that come with such a small device and nanocircuits will become a way of all electronics. However, eventually there will be a limit as to how small nanocircuits can become and computers and electronics will reach their equilibrium speeds.
See also
*
Moore's Law
Moore's law is the observation that the number of transistors in a dense integrated circuit (IC) doubles about every two years. Moore's law is an observation and projection of a historical trend. Rather than a law of physics, it is an empir ...
*
Nanotechnology
Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal o ...
*
History of nanotechnology
The history of nanotechnology traces the development of the concepts and experimental work falling under the broad category of nanotechnology. Although nanotechnology is a relatively recent development in scientific research, the development of ...
*
List of nanotechnology applications
*
Implications of nanotechnology
References
{{Breakthrough of the Year
Nanoelectronics