Multiplier (arithmetic)
   HOME

TheInfoList



OR:

Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on
computer A computer is a machine that can be programmed to Execution (computing), carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as C ...
s, by an
asterisk The asterisk ( ), from Late Latin , from Ancient Greek , ''asteriskos'', "little star", is a typographical symbol. It is so called because it resembles a conventional image of a heraldic star. Computer scientists and mathematicians often voc ...
) is one of the four elementary mathematical operations of
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th ...
, with the other ones being
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol ) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication and Division (mathematics), division. ...
,
subtraction Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. Subtraction is signified by the minus sign, . For example, in the adjacent picture, there are peaches—meaning 5 peaches with 2 taken ...
, and division. The result of a multiplication operation is called a '' product''. The multiplication of whole numbers may be thought of as repeated addition; that is, the multiplication of two numbers is equivalent to adding as many copies of one of them, the ''multiplicand'', as the quantity of the other one, the ''multiplier''. Both numbers can be referred to as ''factors''. :a\times b = \underbrace_ For example, 4 multiplied by 3, often written as 3 \times 4 and spoken as "3 times 4", can be calculated by adding 3 copies of 4 together: :3 \times 4 = 4 + 4 + 4 = 12 Here, 3 (the ''multiplier'') and 4 (the ''multiplicand'') are the ''factors'', and 12 is the ''product''. One of the main properties of multiplication is the commutative property, which states in this case that adding 3 copies of 4 gives the same result as adding 4 copies of 3: :4 \times 3 = 3 + 3 + 3 + 3 = 12 Thus the designation of multiplier and multiplicand does not affect the result of the multiplication. Systematic generalizations of this basic definition define the multiplication of integers (including negative numbers), rational numbers (fractions), and real numbers. Multiplication can also be visualized as counting objects arranged in a
rectangle In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containi ...
(for whole numbers) or as finding the area of a rectangle whose sides have some given
length Length is a measure of distance. In the International System of Quantities, length is a quantity with dimension distance. In most systems of measurement a base unit for length is chosen, from which all other units are derived. In the Interna ...
s. The area of a rectangle does not depend on which side is measured first—a consequence of the commutative property. The product of two measurements is a new type of measurement. For example, multiplying the lengths of the two sides of a rectangle gives its area. Such a product is the subject of dimensional analysis. The inverse operation of multiplication is division. For example, since 4 multiplied by 3 equals 12, 12 divided by 3 equals 4. Indeed, multiplication by 3, followed by division by 3, yields the original number. The division of a number other than 0 by itself equals 1. Multiplication is also defined for other types of numbers, such as complex numbers, and for more abstract constructs, like matrices. For some of these more abstract constructs, the order in which the operands are multiplied together matters. A listing of the many different kinds of products used in mathematics is given in Product (mathematics).


Notation and terminology

In
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers— addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th ...
, multiplication is often written using the multiplication sign (either or ) between the terms (that is, in
infix notation Infix notation is the notation commonly used in arithmetical and logical formulae and statements. It is characterized by the placement of operators between operands—" infixed operators"—such as the plus sign in . Usage Binary relations a ...
). For example, :2\times 3 = 6 ("two times three
equals Equal(s) may refer to: Mathematics * Equality (mathematics). * Equals sign (=), a mathematical symbol used to indicate equality. Arts and entertainment * ''Equals'' (film), a 2015 American science fiction film * ''Equals'' (game), a board game ...
six") :3\times 4 = 12 :2\times 3\times 5 = 6\times 5 = 30 :2\times 2\times 2\times 2\times 2 = 32 There are other mathematical notations for multiplication: * To reduce confusion between the multiplication sign × and the common variable , multiplication is also denoted by dot signs, usually a middle-position dot (rarely period): :5 \cdot 2 or 5\,.\,3 :The middle dot notation, encoded in Unicode as , is now standard in the United States and other countries where the period is used as a decimal point. When the dot operator character is not accessible, the
interpunct An interpunct , also known as an interpoint, middle dot, middot and centered dot or centred dot, is a punctuation mark consisting of a vertically centered dot used for interword separation in ancient Latin script. (Word-separating spaces did no ...
 (·) is used. In other countries that use a
comma The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline ...
as a decimal mark, either the period or a middle dot is used for multiplication. :Historically, in the United Kingdom and Ireland, the middle dot was sometimes used for the decimal to prevent it from disappearing in the ruled line, and the period/full stop was used for multiplication. However, since the Ministry of Technology ruled to use the period as the decimal point in 1968, and the SI standard has since been widely adopted, this usage is now found only in the more traditional journals such as '' The Lancet''. * In algebra, multiplication involving variables is often written as a juxtaposition (e.g., xy for x times y or 5x for five times x), also called ''implied multiplication''. The notation can also be used for quantities that are surrounded by parentheses (e.g., 5(2), (5)2 or (5)(2) for five times two). This implicit usage of multiplication can cause ambiguity when the concatenated variables happen to match the name of another variable, when a variable name in front of a parenthesis can be confused with a function name, or in the correct determination of the
order of operations In mathematics and computer programming, the order of operations (or operator precedence) is a collection of rules that reflect conventions about which procedures to perform first in order to evaluate a given mathematical expression. For exampl ...
. * In vector multiplication, there is a distinction between the cross and the dot symbols. The cross symbol generally denotes the taking a
cross product In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and is ...
of two vectors, yielding a vector as its result, while the dot denotes taking the dot product of two vectors, resulting in a
scalar Scalar may refer to: *Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers * Scalar (physics), a physical quantity that can be described by a single element of a number field such ...
. In computer programming, the
asterisk The asterisk ( ), from Late Latin , from Ancient Greek , ''asteriskos'', "little star", is a typographical symbol. It is so called because it resembles a conventional image of a heraldic star. Computer scientists and mathematicians often voc ...
(as in 5*2) is still the most common notation. This is due to the fact that most computers historically were limited to small character sets (such as ASCII and EBCDIC) that lacked a multiplication sign (such as or ×), while the asterisk appeared on every keyboard. This usage originated in the FORTRAN programming language. The numbers to be multiplied are generally called the " factors". The number to be multiplied is the "multiplicand", and the number by which it is multiplied is the "multiplier". Usually, the multiplier is placed first and the multiplicand is placed second; however sometimes the first factor is the multiplicand and the second the multiplier. Also, as the result of multiplication does not depend on the order of the factors, the distinction between "multiplicand" and "multiplier" is useful only at a very elementary level and in some multiplication algorithms, such as the long multiplication. Therefore, in some sources, the term "multiplicand" is regarded as a synonym for "factor". In algebra, a number that is the multiplier of a variable or expression (e.g., the 3 in 3xy^2) is called a
coefficient In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves var ...
. The result of a multiplication is called a product. When one factor is an integer, the product is a multiple of the other or of the product of the others. Thus 2\times \pi is a multiple of \pi, as is 5133 \times 486 \times \pi. A product of integers is a multiple of each factor; for example, 15 is the product of 3 and 5 and is both a multiple of 3 and a multiple of 5.


Definitions

The product of two numbers or the multiplication between two numbers can be defined for common special cases: integers, natural numbers, fractions, real numbers, complex numbers, and quaternions.


Product of two natural numbers

Placing several stones into a rectangular pattern with r rows and s columns gives : r \cdot s = \sum_^s r = \underbrace_= \sum_^r s = \underbrace_ stones.


Product of two integers

Integers allow positive and negative numbers. Their product is determined by the product of their positive amounts, combined with the sign derived from the following rule: :\begin \hline \times & - & + \\ \hline - & + & - \\ + & - & + \\ \hline \end (This rule is a necessary consequence of demanding distributivity of multiplication over addition, and is not an ''additional rule''.) In words, we have: * A negative number multiplied by a negative number is positive, * A negative number multiplied by a positive number is negative, * A positive number multiplied by a negative number is negative, * A positive number multiplied by a positive number is positive.


Product of two fractions

Two fractions can be multiplied by multiplying their numerators and denominators: : \frac \cdot \frac = \frac


Product of two real numbers

The rigorous definition of the product of two real numbers is a byproduct of the Construction of the real numbers. This construction implies that, for every real number there is a set of rational number such that is the least upper bound of the elements of : :a=\sup_ x. If is another real number that is the least upper bound of , the product a\cdot b is defined as :a\cdot b=\sup_x\cdot y. This definition does not depend of a particular choice of and . That is, if they are changed without changing their least upper bound, then the least upper bound defining a\cdot b is not changed.


Product of two complex numbers

Two complex numbers can be multiplied by the distributive law and the fact that i^2=-1, as follows: :\begin (a + b\, i) \cdot (c + d\, i) &= a \cdot c + a \cdot d\, i + b \, i \cdot c + b \cdot d \cdot i^2\\ &= (a \cdot c - b \cdot d) + (a \cdot d + b \cdot c) \, i \end Geometric meaning of complex multiplication can be understood rewriting complex numbers in polar coordinates: :a + b\, i = r \cdot ( \cos(\varphi) + i \sin(\varphi) ) = r \cdot e ^ Furthermore, :c + d\, i = s \cdot ( \cos(\psi) + i\sin(\psi) ) = s \cdot e^, from which one obtains :(a \cdot c - b \cdot d) + (a \cdot d + b \cdot c) i = r \cdot s \cdot e^. The geometric meaning is that the magnitudes are multiplied and the arguments are added.


Product of two quaternions

The product of two
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quatern ...
s can be found in the article on quaternions. Note, in this case, that a \cdot b and b \cdot a are in general different.


Computation

200px, The Educated Monkey – a For example: set the monkey's feet to 4 and 9, and get the product – 36 – in its hands.">tin toy dated 1918, used as a multiplication "calculator". For example: set the monkey's feet to 4 and 9, and get the product – 36 – in its hands. Many common methods for multiplying numbers using pencil and paper require a multiplication table of memorized or consulted products of small numbers (typically any two numbers from 0 to 9). However, one method, the
peasant multiplication In mathematics, ancient Egyptian multiplication (also known as Egyptian multiplication, Ethiopian multiplication, Russian multiplication, or peasant multiplication), one of two multiplication methods used by scribes, is a systematic method for mul ...
algorithm, does not. The example below illustrates "long multiplication" (the "standard algorithm", "grade-school multiplication"): 23958233 × 5830 ——————————————— 00000000 ( = 23,958,233 × 0) 71874699 ( = 23,958,233 × 30) 191665864 ( = 23,958,233 × 800) + 119791165 ( = 23,958,233 × 5,000) ——————————————— 139676498390 ( = 139,676,498,390 ) In some countries such as Germany, the above multiplication is depicted similarly but with the original product kept horizontal and computation starting with the first digit of the multiplier: 23958233 · 5830 ——————————————— 119791165 191665864 71874699 00000000 ——————————————— 139676498390 Multiplying numbers to more than a couple of decimal places by hand is tedious and error-prone.
Common logarithm In mathematics, the common logarithm is the logarithm with base 10. It is also known as the decadic logarithm and as the decimal logarithm, named after its base, or Briggsian logarithm, after Henry Briggs, an English mathematician who pioneered i ...
s were invented to simplify such calculations, since adding logarithms is equivalent to multiplying. The slide rule allowed numbers to be quickly multiplied to about three places of accuracy. Beginning in the early 20th century, mechanical
calculator An electronic calculator is typically a portable electronic device used to perform calculations, ranging from basic arithmetic to complex mathematics. The first solid-state electronic calculator was created in the early 1960s. Pocket-sized ...
s, such as the Marchant, automated multiplication of up to 10-digit numbers. Modern electronic
computer A computer is a machine that can be programmed to Execution (computing), carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as C ...
s and calculators have greatly reduced the need for multiplication by hand.


Historical algorithms

Methods of multiplication were documented in the writings of ancient Egyptian, and Chinese civilizations. The Ishango bone, dated to about 18,000 to 20,000 BC, may hint at a knowledge of multiplication in the Upper Paleolithic era in Central Africa, but this is speculative.


Egyptians

The Egyptian method of multiplication of integers and fractions, which is documented in the
Rhind Mathematical Papyrus The Rhind Mathematical Papyrus (RMP; also designated as papyrus British Museum 10057 and pBM 10058) is one of the best known examples of ancient Egyptian mathematics. It is named after Alexander Henry Rhind, a Scottish antiquarian, who purchased ...
, was by successive additions and doubling. For instance, to find the product of 13 and 21 one had to double 21 three times, obtaining , , . The full product could then be found by adding the appropriate terms found in the doubling sequence: :13 × 21 = (1 + 4 + 8) × 21 = (1 × 21) + (4 × 21) + (8 × 21) = 21 + 84 + 168 = 273.


Babylonians

The Babylonians used a sexagesimal
positional number system Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the ...
, analogous to the modern-day decimal system. Thus, Babylonian multiplication was very similar to modern decimal multiplication. Because of the relative difficulty of remembering different products, Babylonian mathematicians employed multiplication tables. These tables consisted of a list of the first twenty multiples of a certain ''principal number'' ''n'': ''n'', 2''n'', ..., 20''n''; followed by the multiples of 10''n'': 30''n'' 40''n'', and 50''n''. Then to compute any sexagesimal product, say 53''n'', one only needed to add 50''n'' and 3''n'' computed from the table.


Chinese

In the mathematical text '' Zhoubi Suanjing'', dated prior to 300 BC, and the '' Nine Chapters on the Mathematical Art'', multiplication calculations were written out in words, although the early Chinese mathematicians employed Rod calculus involving place value addition, subtraction, multiplication, and division. The Chinese were already using a decimal multiplication table by the end of the Warring States period.


Modern methods

The modern method of multiplication based on the Hindu–Arabic numeral system was first described by
Brahmagupta Brahmagupta ( – ) was an Indian mathematician and astronomer. He is the author of two early works on mathematics and astronomy: the ''Brāhmasphuṭasiddhānta'' (BSS, "correctly established doctrine of Brahma", dated 628), a theoretical trea ...
. Brahmagupta gave rules for addition, subtraction, multiplication, and division. Henry Burchard Fine, then a professor of mathematics at Princeton University, wrote the following: :''The Indians are the inventors not only of the positional decimal system itself, but of most of the processes involved in elementary reckoning with the system. Addition and subtraction they performed quite as they are performed nowadays; multiplication they effected in many ways, ours among them, but division they did cumbrously.'' These place value decimal arithmetic algorithms were introduced to Arab countries by Al Khwarizmi in the early 9th century and popularized in the Western world by Fibonacci in the 13th century.


Grid method

Grid method multiplication, or the box method, is used in primary schools in England and Wales and in some areas of the United States to help teach an understanding of how multiple digit multiplication works. An example of multiplying 34 by 13 would be to lay the numbers out in a grid as follows: : and then add the entries.


Computer algorithms

The classical method of multiplying two -digit numbers requires digit multiplications. Multiplication algorithms have been designed that reduce the computation time considerably when multiplying large numbers. Methods based on the discrete Fourier transform reduce the
computational complexity In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) ...
to . In 2016, the factor was replaced by a function that increases much slower, though still not constant. In March 2019, David Harvey and Joris van der Hoeven submitted a paper presenting an integer multiplication algorithm with a complexity of O(n\log n). The algorithm, also based on the fast Fourier transform, is conjectured to be asymptotically optimal. The algorithm is not practically useful, as it only becomes faster for multiplying extremely large numbers (having more than bits).


Products of measurements

One can only meaningfully add or subtract quantities of the same type, but quantities of different types can be multiplied or divided without problems. For example, four bags with three marbles each can be thought of as: : bags× marbles per bag= 12 marbles. When two measurements are multiplied together, the product is of a type depending on the types of measurements. The general theory is given by dimensional analysis. This analysis is routinely applied in physics, but it also has applications in finance and other applied fields. A common example in physics is the fact that multiplying speed by time gives distance. For example: :50 kilometers per hour × 3 hours = 150 kilometers. In this case, the hour units cancel out, leaving the product with only kilometer units. Other examples of multiplication involving units include: :2.5 meters × 4.5 meters = 11.25 square meters :11 meters/seconds × 9 seconds = 99 meters :4.5 residents per house × 20 houses = 90 residents


Product of a sequence


Capital pi notation

The product of a sequence of factors can be written with the product symbol \textstyle \prod, which derives from the capital letter Π (pi) in the Greek alphabet (much like the same way the summation symbol \textstyle \sum is derived from the Greek letter Σ (sigma). The meaning of this notation is given by :\prod_^4 (i+1) = (1+1)\,(2+1)\,(3+1)\, (4+1), which results in :\prod_^4 (i+1) = 120. In such a notation, the variable represents a varying integer, called the multiplication index, that runs from the lower value indicated in the subscript to the upper value given by the superscript. The product is obtained by multiplying together all factors obtained by substituting the multiplication index for an integer between the lower and the upper values (the bounds included) in the expression that follows the product operator. More generally, the notation is defined as :\prod_^n x_i = x_m \cdot x_ \cdot x_ \cdot \,\,\cdots\,\, \cdot x_ \cdot x_n, where ''m'' and ''n'' are integers or expressions that evaluate to integers. In the case where , the value of the product is the same as that of the single factor ''x''''m''; if , the product is an empty product whose value is 1—regardless of the expression for the factors.


Properties of capital pi notation

By definition, :\prod_^x_i=x_1\cdot x_2\cdot\ldots\cdot x_n. If all factors are identical, a product of factors is equivalent to exponentiation: :\prod_^x=x\cdot x\cdot\ldots\cdot x=x^n. Associativity and
commutativity In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of ...
of multiplication imply :\prod_^ =\left(\prod_^x_i\right)\left(\prod_^y_i\right) and :\left(\prod_^x_i\right)^a =\prod_^x_i^a if is a nonnegative integer, or if all x_i are positive real numbers, and :\prod_^x^ =x^ if all a_i are nonnegative integers, or if is a positive real number.


Infinite products

One may also consider products of infinitely many terms; these are called infinite products. Notationally, this consists in replacing ''n'' above by the Infinity symbol ∞. The product of such an infinite sequence is defined as the
limit Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2019 ...
of the product of the first ''n'' terms, as ''n'' grows without bound. That is, :\prod_^\infty x_i = \lim_ \prod_^n x_i. One can similarly replace ''m'' with negative infinity, and define: :\prod_^\infty x_i = \left(\lim_\prod_^0 x_i\right) \cdot \left(\lim_ \prod_^n x_i\right), provided both limits exist.


Exponentiation

When multiplication is repeated, the resulting operation is known as '' exponentiation''. For instance, the product of three factors of two (2×2×2) is "two raised to the third power", and is denoted by 23, a two with a
superscript A subscript or superscript is a character (such as a number or letter) that is set slightly below or above the normal line of type, respectively. It is usually smaller than the rest of the text. Subscripts appear at or below the baseline, whil ...
three. In this example, the number two is the ''base'', and three is the ''exponent''. In general, the exponent (or superscript) indicates how many times the base appears in the expression, so that the expression :a^n = \underbrace_n indicates that ''n'' copies of the base ''a'' are to be multiplied together. This notation can be used whenever multiplication is known to be power associative.


Properties

For real and complex numbers, which includes, for example, natural numbers, integers, and fractions, multiplication has certain properties: ; Commutative property :The order in which two numbers are multiplied does not matter: ::x\cdot y = y\cdot x. ; Associative property :Expressions solely involving multiplication or addition are invariant with respect to the
order of operations In mathematics and computer programming, the order of operations (or operator precedence) is a collection of rules that reflect conventions about which procedures to perform first in order to evaluate a given mathematical expression. For exampl ...
: ::(x\cdot y)\cdot z = x\cdot(y\cdot z) ; Distributive property :Holds with respect to multiplication over addition. This identity is of prime importance in simplifying algebraic expressions: ::x\cdot(y + z) = x\cdot y + x\cdot z ; Identity element :The multiplicative identity is 1; anything multiplied by 1 is itself. This feature of 1 is known as the identity property: ::x\cdot 1 = x ; Property of 0 :Any number multiplied by 0 is 0. This is known as the zero property of multiplication: ::x\cdot 0 = 0 ;
Negation In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false ...
:−1 times any number is equal to the
additive inverse In mathematics, the additive inverse of a number is the number that, when added to , yields zero. This number is also known as the opposite (number), sign change, and negation. For a real number, it reverses its sign: the additive inverse (opp ...
of that number. ::(-1)\cdot x = (-x) where (-x)+x=0 :–1 times –1 is 1. ::(-1)\cdot (-1) = 1 ; Inverse element :Every number ''x'', except 0, has a multiplicative inverse, \frac, such that x\cdot\left(\frac\right) = 1. ;
Order Order, ORDER or Orders may refer to: * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of d ...
preservation :Multiplication by a positive number preserves the
order Order, ORDER or Orders may refer to: * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of d ...
: ::For , if then . :Multiplication by a negative number reverses the order: ::For , if then . :The complex numbers do not have an ordering that is compatible with both addition and multiplication. Other mathematical systems that include a multiplication operation may not have all these properties. For example, multiplication is not, in general, commutative for matrices and
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quatern ...
s.


Axioms

In the book '' Arithmetices principia, nova methodo exposita'', Giuseppe Peano proposed axioms for arithmetic based on his axioms for natural numbers. Peano arithmetic has two axioms for multiplication: :x \times 0 = 0 :x \times S(y) = (x \times y) + x Here ''S''(''y'') represents the successor of ''y''; i.e., the natural number that follows ''y''. The various properties like associativity can be proved from these and the other axioms of Peano arithmetic, including induction. For instance, ''S''(0), denoted by 1, is a multiplicative identity because :x \times 1 = x \times S(0) = (x \times 0) + x = 0 + x = x. The axioms for integers typically define them as equivalence classes of ordered pairs of natural numbers. The model is based on treating (''x'',''y'') as equivalent to when ''x'' and ''y'' are treated as integers. Thus both (0,1) and (1,2) are equivalent to −1. The multiplication axiom for integers defined this way is :(x_p,\, x_m) \times (y_p,\, y_m) = (x_p \times y_p + x_m \times y_m,\; x_p \times y_m + x_m \times y_p). The rule that −1 × −1 = 1 can then be deduced from :(0, 1) \times (0, 1) = (0 \times 0 + 1 \times 1,\, 0 \times 1 + 1 \times 0) = (1,0). Multiplication is extended in a similar way to rational numbers and then to real numbers.


Multiplication with set theory

The product of non-negative integers can be defined with set theory using cardinal numbers or the Peano axioms. See
below Below may refer to: *Earth *Ground (disambiguation) *Soil *Floor *Bottom (disambiguation) Bottom may refer to: Anatomy and sex * Bottom (BDSM), the partner in a BDSM who takes the passive, receiving, or obedient role, to that of the top or ...
how to extend this to multiplying arbitrary integers, and then arbitrary rational numbers. The product of real numbers is defined in terms of products of rational numbers; see construction of the real numbers.


Multiplication in group theory

There are many sets that, under the operation of multiplication, satisfy the axioms that define group structure. These axioms are closure, associativity, and the inclusion of an identity element and inverses. A simple example is the set of non-zero rational numbers. Here we have identity 1, as opposed to groups under addition where the identity is typically 0. Note that with the rationals, we must exclude zero because, under multiplication, it does not have an inverse: there is no rational number that can be multiplied by zero to result in 1. In this example, we have an abelian group, but that is not always the case. To see this, consider the set of invertible square matrices of a given dimension over a given field. Here, it is straightforward to verify closure, associativity, and inclusion of identity (the
identity matrix In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial o ...
) and inverses. However, matrix multiplication is not commutative, which shows that this group is non-abelian. Another fact worth noticing is that the integers under multiplication do not form a group—even if we exclude zero. This is easily seen by the nonexistence of an inverse for all elements other than 1 and −1. Multiplication in group theory is typically notated either by a dot or by juxtaposition (the omission of an operation symbol between elements). So multiplying element a by element b could be notated as a \cdot b or ab. When referring to a group via the indication of the set and operation, the dot is used. For example, our first example could be indicated by \left( \mathbb/ \ ,\, \cdot \right).


Multiplication of different kinds of numbers

Numbers can ''count'' (3 apples), ''order'' (the 3rd apple), or ''measure'' (3.5 feet high); as the history of mathematics has progressed from counting on our fingers to modelling quantum mechanics, multiplication has been generalized to more complicated and abstract types of numbers, and to things that are not numbers (such as matrices) or do not look much like numbers (such as
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quatern ...
s). ;Integers :N\times M is the sum of ''N'' copies of ''M'' when ''N'' and ''M'' are positive whole numbers. This gives the number of things in an array ''N'' wide and ''M'' high. Generalization to negative numbers can be done by :N\times (-M) = (-N)\times M = - (N\times M) and :(-N)\times (-M) = N\times M :The same sign rules apply to rational and real numbers. ; Rational numbers :Generalization to fractions \frac\times \frac is by multiplying the numerators and denominators respectively: \frac\times \frac = \frac. This gives the area of a rectangle \frac high and \frac wide, and is the same as the number of things in an array when the rational numbers happen to be whole numbers. ; Real numbers :Real numbers and their products can be defined in terms of sequences of rational numbers. ; Complex numbers :Considering complex numbers z_1 and z_2 as ordered pairs of real numbers (a_1, b_1) and (a_2, b_2), the product z_1\times z_2 is (a_1\times a_2 - b_1\times b_2, a_1\times b_2 + a_2\times b_1). This is the same as for reals a_1\times a_2 when the ''imaginary parts'' b_1 and b_2 are zero. :Equivalently, denoting \sqrt as i, we have z_1 \times z_2 = (a_1+b_1i)(a_2+b_2i)=(a_1 \times a_2)+(a_1\times b_2i)+(b_1\times a_2i)+(b_1\times b_2i^2)=(a_1a_2-b_1b_2)+(a_1b_2+b_1a_2)i. :Alternatively, in trigonometric form, if z_1 = r_1(\cos\phi_1+i\sin\phi_1), z_2 = r_2(\cos\phi_2+i\sin\phi_2), thenz_1z_2 = r_1r_2(\cos(\phi_1 + \phi_2) + i\sin(\phi_1 + \phi_2)). ;Further generalizations :See Multiplication in group theory, above, and Multiplicative group, which for example includes matrix multiplication. A very general, and abstract, concept of multiplication is as the "multiplicatively denoted" (second) binary operation in a ring. An example of a ring that is not any of the above number systems is a polynomial ring (you can add and multiply polynomials, but polynomials are not numbers in any usual sense.) ;Division :Often division, \frac, is the same as multiplication by an inverse, x\left(\frac\right). Multiplication for some types of "numbers" may have corresponding division, without inverses; in an integral domain ''x'' may have no inverse "\frac" but \frac may be defined. In a division ring there are inverses, but \frac may be ambiguous in non-commutative rings since x\left(\frac\right) need not be the same as \left(\frac\right)x.


See also

* Dimensional analysis * Multiplication algorithm ** Karatsuba algorithm, for large numbers ** Toom–Cook multiplication, for very large numbers ** Schönhage–Strassen algorithm, for huge numbers * Multiplication table * Binary multiplier, how computers multiply ** Booth's multiplication algorithm **
Floating-point arithmetic In computing, floating-point arithmetic (FP) is arithmetic that represents real numbers approximately, using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. For example, 12.345 can be ...
**
Fused multiply–add Fuse or FUSE may refer to: Devices * Fuse (electrical), a device used in electrical systems to protect against excessive current ** Fuse (automotive), a class of fuses for vehicles * Fuse (hydraulic), a device used in hydraulic systems to protect ...
** Multiply–accumulate ** Wallace tree * Multiplicative inverse, reciprocal *
Factorial In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \t ...
* Genaille–Lucas rulers *
Lunar arithmetic Lunar arithmetic, formerly called dismal arithmetic, is a version of arithmetic in which the addition and multiplication operations on digits are defined as the max and min operations. Thus, in lunar arithmetic, :2+7=\max\=7 and 2\times 7 = \min ...
* Napier's bones *
Peasant multiplication In mathematics, ancient Egyptian multiplication (also known as Egyptian multiplication, Ethiopian multiplication, Russian multiplication, or peasant multiplication), one of two multiplication methods used by scribes, is a systematic method for mul ...
* Product (mathematics), for generalizations * Slide rule


Notes


References

*


External links


Multiplication
an
Arithmetic Operations In Various Number Systems
at
cut-the-knot Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet-born Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Math ...

Modern Chinese Multiplication Techniques on an Abacus
{{Authority control Elementary arithmetic Mathematical notation Articles containing proofs