HOME

TheInfoList



OR:

In
finance Finance refers to monetary resources and to the study and Academic discipline, discipline of money, currency, assets and Liability (financial accounting), liabilities. As a subject of study, is a field of Business administration, Business Admin ...
, model risk is the risk of loss resulting from using insufficiently accurate
models A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin , . Models can be divided int ...
to make decisions, originally and frequently in the context of valuing financial securities. Here, Rebonato (2002) defines model risk as "the risk of occurrence of a significant difference between the mark-to-model value of a complex and/or illiquid instrument, and the price at which the same instrument is revealed to have traded in the market". However, model risk is increasingly relevant in contexts other than financial securities valuation, including assigning consumer
credit score A credit score is a numerical expression based on a level analysis of a person's credit files, to represent the creditworthiness of an individual. A credit score is primarily based on a credit report, information typically sourced from credit bu ...
s, real-time prediction of fraudulent credit card transactions, and computing the probability of an air flight passenger being a terrorist. In fact, Burke regards failure to use a model (instead over-relying on expert judgment) as a type of model risk.http://www.siiglobal.org/SII/WEB5/sii_files/Membership/PIFs/Risk/Model%20Risk%2024%2011%2009%20Final.pdf


Types

Derman describes various types of model risk that arise from using a model:


Wrong model

* Inapplicability of model. * Incorrect model specification.


Model implementation

* Programming errors. * Technical errors. * Use of inaccurate numerical approximations.


Model usage

* Implementation risk. * Data issues. * Calibration errors.


Sources


Uncertainty on volatility

Volatility is the most important input in risk management models and pricing models. Uncertainty on volatility leads to model risk. Derman believes that products whose value depends on a
volatility smile Volatility smiles are implied volatility patterns that arise in pricing financial options. It is a parameter (implied volatility) that is needed to be modified for the Black–Scholes formula to fit market prices. In particular for a given ex ...
are most likely to suffer from model risk. He writes "I would think it's safe to say that there is no area where model risk is more of an issue than in the modeling of the volatility smile." Avellaneda & Paras (1995) proposed a systematic way of studying and mitigating model risk resulting from volatility uncertainty.


Time inconsistency

Buraschi and Corielli formalise the concept of 'time inconsistency' with regards to no-arbitrage models that allow for a perfect fit of the term structure of the interest rates. In these models the current
yield curve In finance, the yield curve is a graph which depicts how the Yield to maturity, yields on debt instruments – such as bonds – vary as a function of their years remaining to Maturity (finance), maturity. Typically, the graph's horizontal ...
is an input so that new observations on the yield curve can be used to update the model at regular frequencies. They explore the issue of time-consistent and self-financing strategies in this class of models. Model risk affects all the three main steps of
risk management Risk management is the identification, evaluation, and prioritization of risks, followed by the minimization, monitoring, and control of the impact or probability of those risks occurring. Risks can come from various sources (i.e, Threat (sec ...
: specification, estimation and implementation.


Correlation uncertainty

Uncertainty on correlation parameters is another important source of model risk. Cont and Deguest propose a method for computing model risk exposures in multi-asset equity derivatives and show that options which depend on the worst or best performances in a basket (so called rainbow option) are more exposed to model uncertainty than index options. Gennheimer investigates the model risk present in pricing basket default derivatives. He prices these derivatives with various copulas and concludes that "... unless one is very sure about the dependence structure governing the credit basket, any investors willing to trade basket default products should imperatively compute prices under alternative copula specifications and verify the estimation errors of their simulation to know at least the model risks they run".


Complexity

Complexity of a model or a financial contract may be a source of model risk, leading to incorrect identification of its risk factors. This factor was cited as a major source of model risk for mortgage backed securities portfolios during the 2007 crisis.


Illiquidity and model risk

Model risk does not only exist for complex financial contracts. Frey (2000) presents a study of how market illiquidity is a source of model risk. He writes "Understanding the robustness of models used for hedging and risk-management purposes with respect to the assumption of perfectly liquid markets is therefore an important issue in the analysis of model risk in general."
Convertible bond In finance, a convertible bond, convertible note, or convertible debt (or a convertible debenture if it has a maturity of greater than 10 years) is a type of bond that the holder can convert into a specified number of shares of common stock in ...
s,
mortgage-backed securities A mortgage-backed security (MBS) is a type of asset-backed security (an "Financial instrument, instrument") which is secured by a mortgage loan, mortgage or collection of mortgages. The mortgages are aggregated and sold to a group of individuals ( ...
, and
high-yield bond In finance, a high-yield bond (non-investment-grade bond, speculative-grade bond, or junk bond) is a bond that is rated below investment grade by credit rating agencies. These bonds have a higher risk of default or other adverse credit even ...
s can often be illiquid and difficult to value. Hedge funds that trade these securities can be exposed to model risk when calculating monthly NAV for its investors.


Spreadsheet Errors

Many models are built using
spreadsheet A spreadsheet is a computer application for computation, organization, analysis and storage of data in tabular form. Spreadsheets were developed as computerized analogs of paper accounting worksheets. The program operates on data entered in c ...
technology, which can be particularly prone to implementation errors. Mitigation strategies include adding consistency checks, validating inputs, and using specialized tools. See Spreadsheet risk.


Quantitative approaches


Model averaging vs worst-case approach

Rantala (2006) mentions that "In the face of model risk, rather than to base decisions on a single selected 'best' model, the modeller can base his inference on an entire set of models by using model averaging." This approach avoids the "flaw of averages". Another approach to model risk is the worst-case, or minmax approach, advocated in decision theory by Gilboa and Schmeidler. In this approach one considers a range of models and minimizes the loss encountered in the worst-case scenario. This approach to model risk has been developed by Cont (2006). Jokhadze and Schmidt (2018) propose several model risk measures using Bayesian methodology. They introduce superposed risk measures that incorporate model risk and enables consistent market and model risk management. Further, they provide axioms of model risk measures and define several practical examples of superposed model risk measures in the context of financial risk management and contingent claim pricing.


Quantifying model risk exposure

To measure the risk induced by a model, it has to be compared to an alternative model, or a set of alternative benchmark models. The problem is how to choose these benchmark models. In the context of derivative pricing Cont (2006) proposes a quantitative approach to measurement of model risk exposures in derivatives portfolios: first, a set of benchmark models is specified and calibrated to market prices of liquid instruments, then the target portfolio is priced under all benchmark models. A measure of exposure to model risk is then given by the difference between the current portfolio valuation and the worst-case valuation under the benchmark models. Such a measure may be used as a way of determining a reserve for model risk for derivatives portfolios.


Position limits and valuation reserves

Jokhadze and Schmidt (2018) introduce monetary market risk measures that covers model risk losses. Their methodology enables to harmonize market and model risk management and define limits and required capitals for risk positions. Kato and Yoshiba discuss qualitative and quantitative ways of controlling model risk. They write "From a quantitative perspective, in the case of pricing models, we can set up a reserve to allow for the difference in estimations using alternative models. In the case of risk measurement models, scenario analysis can be undertaken for various fluctuation patterns of risk factors, or position limits can be established based on information obtained from scenario analysis." Cont (2006) advocates the use of model risk exposure for computing such reserves.


Mitigation


Theoretical basis

* Considering key assumptions. * Considering simple cases and their solutions (model boundaries). * Parsimony.


Implementation

* Pride of ownership. * Disseminating the model outwards in an orderly manner.


Testing

*
Stress testing Stress testing is a form of deliberately intense or thorough testing, used to determine the stability of a given system, critical infrastructure or entity. It involves testing beyond normal operational capacity, often to a breaking point, in orde ...
and backtesting. * Avoid letting small issues snowball into large issues later on. * Independent validation * Ongoing monitoring and against market


Examples of model risk mitigation


Parsimony

Taleb wrote when describing why most new models that attempted to correct the inadequacies of the Black–Scholes model failed to become accepted: :Traders are not fooled by the Black–Scholes–Merton model. The existence of a '
volatility surface Volatility smiles are implied volatility patterns that arise in pricing financial options. It is a parameter (implied volatility) that is needed to be modified for the Black–Scholes formula to fit market prices. In particular for a given ex ...
' is one such adaptation. But they find it preferable to fudge one parameter, namely volatility, and make it a function of time to expiry and strike price, rather than have to precisely estimate another. However, Cherubini and Della Lunga describe the disadvantages of parsimony in the context of volatility and correlation modelling. Using an excessive number of parameters may induce
overfitting In mathematical modeling, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit to additional data or predict future observations reliably". An overfi ...
while choosing a severely specified model may easily induce model misspecification and a systematic failure to represent the future distribution.


Model risk premium

Fender and Kiff (2004) note that holding complex financial instruments, such as CDOs, "translates into heightened dependence on these assumptions and, thus, higher model risk. As this risk should be expected to be priced by the market, part of the yield pick-up obtained relative to equally rated single obligor instruments is likely to be a direct reflection of model risk."


See also

* * *
Risk management Risk management is the identification, evaluation, and prioritization of risks, followed by the minimization, monitoring, and control of the impact or probability of those risks occurring. Risks can come from various sources (i.e, Threat (sec ...
*
Statistical model specification In statistics, model specification is part of the process of building a statistical model: specification consists of selecting an appropriate functional form for the model and choosing which variables to include. For example, given personal incom ...
*
Value at risk Value at risk (VaR) is a measure of the risk of loss of investment/capital. It estimates how much a set of investments might lose (with a given probability), given normal market conditions, in a set time period such as a day. VaR is typically us ...


Notes


References

* * * * * * * Board of Governors of the Federal Reserve System (2011)
"Supervisory Guidance on Model Risk Management"
US Federal Reserve The Federal Reserve System (often shortened to the Federal Reserve, or simply the Fed) is the central banking system of the United States. It was created on December 23, 1913, with the enactment of the Federal Reserve Act, after a series of ...
. * * * * Joseph Simonian (2024)
“Investment Model Validation - A Guide for Practitioners”
CFA Institute The CFA Institute is a global, not-for-profit professional organization that provides investment professionals with finance education. The institute aims to promote standards in ethics, education, and professional excellence in the global investme ...
Research Foundation. * {{cite book , first=Nassim , last=Taleb , year=2006 , title=Fooled by Randomness: The Hidden Role of Chance in Life and in the Markets , publisher=Wiley , isbn=1-4000-6793-6 , url-access=registration , url=https://archive.org/details/fooledbyrandomne00tale Actuarial science Financial risk Financial models