HOME

TheInfoList



OR:

In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
and
probability theory Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
, Mean-field theory (MFT) or Self-consistent field theory studies the behavior of high-dimensional random (
stochastic Stochastic (; ) is the property of being well-described by a random probability distribution. ''Stochasticity'' and ''randomness'' are technically distinct concepts: the former refers to a modeling approach, while the latter describes phenomena; i ...
) models by studying a simpler model that approximates the original by averaging over
degrees of freedom In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinite ...
(the number of values in the final calculation of a
statistic A statistic (singular) or sample statistic is any quantity computed from values in a sample which is considered for a statistical purpose. Statistical purposes include estimating a population parameter, describing a sample, or evaluating a hypot ...
that are free to vary). Such models consider many individual components that interact with each other. The main idea of MFT is to replace all interactions to any one body with an average or effective interaction, sometimes called a ''molecular field''. This reduces any
many-body problem The many-body problem is a general name for a vast category of physical problems pertaining to the properties of microscopic systems made of many interacting particles. Terminology ''Microscopic'' here implies that quantum mechanics has to be ...
into an effective one-body problem. The ease of solving MFT problems means that some insight into the behavior of the system can be obtained at a lower computational cost. MFT has since been applied to a wide range of fields outside of physics, including
statistical inference Statistical inference is the process of using data analysis to infer properties of an underlying probability distribution.Upton, G., Cook, I. (2008) ''Oxford Dictionary of Statistics'', OUP. . Inferential statistical analysis infers properties of ...
,
graphical models A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. Graphical models are commonly used i ...
,
neuroscience Neuroscience is the scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions, and its disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, ...
,
artificial intelligence Artificial intelligence (AI) is the capability of computer, computational systems to perform tasks typically associated with human intelligence, such as learning, reasoning, problem-solving, perception, and decision-making. It is a field of re ...
, epidemic models,
queueing theory Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because th ...
, computer-network performance and
game theory Game theory is the study of mathematical models of strategic interactions. It has applications in many fields of social science, and is used extensively in economics, logic, systems science and computer science. Initially, game theory addressed ...
, as in the quantal response equilibrium.


Origins

The idea first appeared in physics (
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applicati ...
) in the work of
Pierre Curie Pierre Curie ( ; ; 15 May 1859 – 19 April 1906) was a French physicist, Radiochemistry, radiochemist, and a pioneer in crystallography, magnetism, piezoelectricity, and radioactivity. He shared the 1903 Nobel Prize in Physics with his wife, ...
and Pierre Weiss to describe
phase transitions In physics, chemistry, and other related fields like biology, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic Sta ...
. MFT has been used in the Bragg–Williams approximation, models on
Bethe lattice In statistical mechanics and mathematics, the Bethe lattice (also called a regular tree) is an infinite symmetric regular tree where all vertices have the same number of neighbors. The Bethe lattice was introduced into the physics literature by ...
,
Landau theory Landau theory (also known as Ginzburg–Landau theory, despite the confusing name) in physics is a theory that Lev Landau introduced in an attempt to formulate a general theory of continuous (i.e., second-order) phase transitions. It can also be ...
, Curie-Weiss law for
magnetic susceptibility In electromagnetism, the magnetic susceptibility (; denoted , chi) is a measure of how much a material will become magnetized in an applied magnetic field. It is the ratio of magnetization (magnetic moment per unit volume) to the applied magnet ...
,
Flory–Huggins solution theory Flory–Huggins solution theory is a lattice model (physics), lattice model of the thermodynamics of polymer solutions which takes account of the great dissimilarity in molecule, molecular sizes in adapting the usual expression (mathematics), exp ...
, and
Scheutjens–Fleer theory Scheutjens–Fleer theory is a lattice-based self-consistent field theory that is the basis for many computational analyses of polymer adsorption Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to ...
.
Systems A system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment, is described by its boundaries, structure and purpose and is exp ...
with many (sometimes infinite) degrees of freedom are generally hard to solve exactly or compute in closed, analytic form, except for some simple cases (e.g. certain Gaussian
random-field In physics and mathematics, a random field is a random function over an arbitrary domain (usually a multi-dimensional space such as \mathbb^n). That is, it is a function f(x) that takes on a random value at each point x \in \mathbb^n(or some other ...
theories, the 1D
Ising model The Ising model (or Lenz–Ising model), named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical models in physics, mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that r ...
). Often combinatorial problems arise that make things like computing the partition function of a system difficult. MFT is an approximation method that often makes the original problem to be solvable and open to calculation, and in some cases MFT may give very accurate approximations. In field theory, the Hamiltonian may be expanded in terms of the magnitude of fluctuations around the mean of the field. In this context, MFT can be viewed as the "zeroth-order" expansion of the Hamiltonian in fluctuations. Physically, this means that an MFT system has no fluctuations, but this coincides with the idea that one is replacing all interactions with a "mean-field”. Quite often, MFT provides a convenient launch point for studying higher-order fluctuations. For example, when computing the partition function, studying the
combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ...
of the interaction terms in the
Hamiltonian Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian ...
can sometimes at best produce perturbation results or
Feynman diagram In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced ...
s that correct the mean-field approximation.


Validity

In general, dimensionality plays an active role in determining whether a mean-field approach will work for any particular problem. There is sometimes a
critical dimension In the renormalization group analysis of phase transitions in physics, a critical dimension is the dimensionality of space at which the character of the phase transition changes. Below the lower critical dimension there is no phase transition. ...
above which MFT is valid and below which it is not. Heuristically, many interactions are replaced in MFT by one effective interaction. So if the field or particle exhibits many random interactions in the original system, they tend to cancel each other out, so the mean effective interaction and MFT will be more accurate. This is true in cases of high dimensionality, when the Hamiltonian includes long-range forces, or when the particles are extended (e.g.
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
s). The Ginzburg criterion is the formal expression of how fluctuations render MFT a poor approximation, often depending upon the number of spatial dimensions in the system of interest.


Formal approach (Hamiltonian)

The formal basis for mean-field theory is the Bogoliubov inequality. This inequality states that the free energy of a system with Hamiltonian : \mathcal = \mathcal_0 + \Delta \mathcal has the following upper bound: : F \leq F_0 \ \stackrel\ \langle \mathcal \rangle_0 - T S_0, where S_0 is the
entropy Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
, and F and F_0 are Helmholtz free energies. The average is taken over the equilibrium ensemble of the reference system with Hamiltonian \mathcal_0. In the special case that the reference Hamiltonian is that of a non-interacting system and can thus be written as : \mathcal_0 = \sum_^N h_i(\xi_i), where \xi_i are the
degrees of freedom In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinite ...
of the individual components of our statistical system (atoms, spins and so forth), one can consider sharpening the upper bound by minimising the right side of the inequality. The minimising reference system is then the "best" approximation to the true system using non-correlated degrees of freedom and is known as the mean field approximation. For the most common case that the target Hamiltonian contains only pairwise interactions, i.e., : \mathcal = \sum_ V_(\xi_i, \xi_j), where \mathcal is the set of pairs that interact, the minimising procedure can be carried out formally. Define \operatorname_i f(\xi_i) as the generalized sum of the observable f over the degrees of freedom of the single component (sum for discrete variables, integrals for continuous ones). The approximating free energy is given by :\begin F_0 &= \operatorname_ \mathcal(\xi_1, \xi_2, \ldots, \xi_N) P^_0(\xi_1, \xi_2, \ldots, \xi_N) \\ &+ kT \,\operatorname_ P^_0(\xi_1, \xi_2, \ldots, \xi_N) \log P^_0(\xi_1, \xi_2, \ldots,\xi_N), \end where P^_0(\xi_1, \xi_2, \dots, \xi_N) is the probability to find the reference system in the state specified by the variables (\xi_1, \xi_2, \dots, \xi_N). This probability is given by the normalized
Boltzmann factor Factor (Latin, ) may refer to: Commerce * Factor (agent), a person who acts for, notably a mercantile and colonial agent * Factor (Scotland), a person or firm managing a Scottish estate * Factors of production, such a factor is a resource used ...
: \begin P^_0(\xi_1, \xi_2, \ldots, \xi_N) &= \frac e^ \\ &= \prod_^N \frac e^ \ \stackrel\ \prod_^N P^_0(\xi_i), \end where Z_0 is the partition function. Thus :\begin F_0 &= \sum_ \operatorname_ V_(\xi_i, \xi_j) P^_0(\xi_i) P^_0(\xi_j) \\ &+ kT \sum_^N \operatorname_i P^_0(\xi_i) \log P^_0(\xi_i). \end In order to minimise, we take the derivative with respect to the single-degree-of-freedom probabilities P^_0 using a
Lagrange multiplier In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function (mathematics), function subject to constraint (mathematics), equation constraints (i.e., subject to the conditio ...
to ensure proper normalization. The end result is the set of self-consistency equations : P^_0(\xi_i) = \frac e^,\quad i = 1, 2, \ldots, N, where the mean field is given by : h_i^\text(\xi_i) = \sum_ \operatorname_j V_(\xi_i, \xi_j) P^_0(\xi_j).


Applications

Mean field theory can be applied to a number of physical systems so as to study phenomena such as
phase transitions In physics, chemistry, and other related fields like biology, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic Sta ...
.


Ising model


Formal derivation

The Bogoliubov inequality, shown above, can be used to find the dynamics of a mean field model of the two-dimensional Ising lattice. A magnetisation function can be calculated from the resultant approximate free energy. The first step is choosing a more tractable approximation of the true Hamiltonian. Using a non-interacting or effective field Hamiltonian, : -m \sum_i s_i , the variational free energy is : F_V = F_0 + \left \langle \left( -J \sum s_i s_j - h \sum s_i \right) - \left(-m\sum s_i\right) \right \rangle_0. By the Bogoliubov inequality, simplifying this quantity and calculating the magnetisation function that minimises the variational free energy yields the best approximation to the actual magnetisation. The minimiser is : m = J\sum\langle s_j \rangle_0 + h, which is the
ensemble average In physics, specifically statistical mechanics, an ensemble (also statistical ensemble) is an idealization consisting of a large number of virtual copies (sometimes infinitely many) of a system, considered all at once, each of which represents a ...
of spin. This simplifies to : m = \text(zJ\beta m) + h. Equating the effective field felt by all spins to a mean spin value relates the variational approach to the suppression of fluctuations. The physical interpretation of the magnetisation function is then a field of mean values for individual spins.


Non-interacting spins approximation

Consider the
Ising model The Ising model (or Lenz–Ising model), named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical models in physics, mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that r ...
on a d-dimensional lattice. The Hamiltonian is given by : H = -J \sum_ s_i s_j - h \sum_i s_i, where the \sum_ indicates summation over the pair of nearest neighbors \langle i, j \rangle, and s_i, s_j = \pm 1 are neighboring Ising spins. Let us transform our spin variable by introducing the fluctuation from its mean value m_i \equiv \langle s_i \rangle. We may rewrite the Hamiltonian as : H = -J \sum_ (m_i + \delta s_i) (m_j + \delta s_j) - h \sum_i s_i, where we define \delta s_i \equiv s_i - m_i; this is the ''fluctuation'' of the spin. If we expand the right side, we obtain one term that is entirely dependent on the mean values of the spins and independent of the spin configurations. This is the trivial term, which does not affect the statistical properties of the system. The next term is the one involving the product of the mean value of the spin and the fluctuation value. Finally, the last term involves a product of two fluctuation values. The mean field approximation consists of neglecting this second-order fluctuation term: : H \approx H^\text \equiv -J \sum_ (m_i m_j + m_i \delta s_j + m_j \delta s_i) - h \sum_i s_i. These fluctuations are enhanced at low dimensions, making MFT a better approximation for high dimensions. Again, the summand can be re-expanded. In addition, we expect that the mean value of each spin is site-independent, since the Ising chain is translationally invariant. This yields : H^\text = -J \sum_ \big(m^2 + 2m(s_i - m)\big) - h \sum_i s_i. The summation over neighboring spins can be rewritten as \sum_ = \frac \sum_i \sum_, where nn(i) means "nearest neighbor of i", and the 1/2 prefactor avoids double counting, since each bond participates in two spins. Simplifying leads to the final expression : H^\text = \frac - \underbrace_ \sum_i s_i, where z is the
coordination number In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central ion ...
. At this point, the Ising Hamiltonian has been ''decoupled'' into a sum of one-body Hamiltonians with an ''effective mean field'' h^\text = h + J z m, which is the sum of the external field h and of the ''mean field'' induced by the neighboring spins. It is worth noting that this mean field directly depends on the number of nearest neighbors and thus on the dimension of the system (for instance, for a hypercubic lattice of dimension d, z = 2 d). Substituting this Hamiltonian into the partition function and solving the effective 1D problem, we obtain : Z = e^ \left \cosh\left(\frac\right)\rightN, where N is the number of lattice sites. This is a closed and exact expression for the partition function of the system. We may obtain the free energy of the system and calculate
critical exponent Critical exponents describe the behavior of physical quantities near continuous phase transitions. It is believed, though not proven, that they are universal, i.e. they do not depend on the details of the physical system, but only on some of its g ...
s. In particular, we can obtain the magnetization m as a function of h^\text. We thus have two equations between m and h^\text, allowing us to determine m as a function of temperature. This leads to the following observation: * For temperatures greater than a certain value T_\text, the only solution is m = 0. The system is
paramagnetic Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, ...
. * For T < T_\text, there are two non-zero solutions: m = \pm m_0. The system is
ferromagnetic Ferromagnetism is a property of certain materials (such as iron) that results in a significant, observable magnetic permeability, and in many cases, a significant magnetic coercivity, allowing the material to form a permanent magnet. Ferromagne ...
. T_\text is given by the following relation: T_\text = \frac. This shows that MFT can account for the ferromagnetic phase transition.


Application to other systems

Similarly, MFT can be applied to other types of Hamiltonian as in the following cases: * To study the metal– superconductor transition. In this case, the analog of the magnetization is the superconducting gap \Delta. * The molecular field of a
liquid crystal Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal can flow like a liquid, but its molecules may be oriented in a common direction as i ...
that emerges when the
Laplacian In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is th ...
of the director field is non-zero. * To determine the optimal
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
side chain In organic chemistry and biochemistry, a side chain is a substituent, chemical group that is attached to a core part of the molecule called the "main chain" or backbone chain, backbone. The side chain is a hydrocarbon branching element of a mo ...
packing given a fixed protein backbone in
protein structure prediction Protein structure prediction is the inference of the three-dimensional structure of a protein from its amino acid sequence—that is, the prediction of its Protein secondary structure, secondary and Protein tertiary structure, tertiary structure ...
(see
Self-consistent mean field (biology) The self-consistent mean field (SCMF) method is an adaptation of mean field theory used in protein structure prediction to determine the optimal amino acid side chain packing given a fixed protein backbone. It is faster but less accurate than de ...
). * To determine the elastic properties of a composite material. Variationally minimisation like mean field theory can be also be used in statistical inference.


Extension to time-dependent mean fields

In mean field theory, the mean field appearing in the single-site problem is a time-independent scalar or vector quantity. However, this isn't always the case: in a variant of mean field theory called dynamical mean field theory (DMFT), the mean field becomes a time-dependent quantity. For instance, DMFT can be applied to the
Hubbard model The Hubbard model is an Approximation, approximate model used to describe the transition between Conductor (material), conducting and Electrical insulation, insulating systems. It is particularly useful in solid-state physics. The model is named ...
to study the metal–Mott-insulator transition.


See also

* Dynamical mean field theory *
Mean field game theory Mean-field game theory is the study of strategic decision making by small interacting agent (economics), agents in very large populations. It lies at the intersection of game theory with stochastic analysis and control theory. The use of the term " ...


References

{{DEFAULTSORT:Mean Field Theory Statistical mechanics Concepts in physics Electronic structure methods