HOME

TheInfoList



OR:

Maltase-glucoamylase, intestinal is an enzyme that in humans is encoded by the ''MGAM''
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
. Maltase-glucoamylase is an alpha-glucosidase digestive enzyme. It consists of two subunits with differing substrate specificity. Recombinant enzyme studies have shown that its N-terminal catalytic domain has highest activity against maltose, while the C-terminal domain has a broader substrate specificity and activity against glucose oligomers. In the small intestine, this enzyme works in synergy with sucrase-isomaltase and
alpha-amylase α-Amylase is an enzyme (EC 3.2.1.1; systematic name 4-α-D-glucan glucanohydrolase) that hydrolyses α bonds of large, α-linked polysaccharides, such as starch and glycogen, yielding shorter chains thereof, dextrins, and maltose: :Endohyd ...
to digest the full range of dietary starches.


Gene

The MGAM gene –– which is located on chromosome 7q34 –– codes for the protein Maltase-Glucoamylase. An alternative name for Maltase-Glucoamylase is glucan 1,4-alpha-glycosidase.


Tissue distribution

Maltase-glucoamylase is a membrane-bound enzyme located in the intestinal walls. This lining of the intestine forms
brush border A brush border (striated border or brush border membrane) is the microvilli-covered surface of simple cuboidal and simple columnar epithelium found in different parts of the body. Microvilli are approximately 100 nanometers in diameter and their ...
in which food has to pass in order for the intestines to absorb the food.


Enzymatic mechanism

This enzyme is a part of a family of enzymes called
glycoside hydrolase family 31 In molecular biology, glycoside hydrolase family 31 is a family of glycoside hydrolases. Glycoside hydrolases are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a ...
(GH31). This is due to the digestive mechanism of the enzyme. GH31 enzymes undergo what is known as the Koshland double displacement mechanism in which a glycolsylation and deglycosylation step occurs, resulting in the retention of the overall configuration of the anomeric center.


Structure


N-terminal maltase

The N-terminal maltase-glucoamylase enzymatic unit is in turn composed of 5 specific protein domains. The first of the 5 protein domains consist of a P-type trefoil domain containing a cysteine rich domain. Second is an N-terminal beta-sandwich domain, identified via two antiparallel beta pleated sheets. The third and largest domain consists of a catalytic (beta/alpha) barrel type domain containing two inserted loops. The fourth and 5th domains are C-terminal domains, similar to the N-terminal beta-sandwich domain. The N-terminal Maltase-glucoamylase does not have the +2/+3 sugar binding active sites and so it cannot bind to larger substrates. The N-terminal domain shows its optimal enzymatic affinity for substrates maltose,
maltotriose Maltotriose is a trisaccharide (three-part sugar) consisting of three glucose molecules linked with α-1,4 glycosidic bonds. It is most commonly produced by the digestive enzyme alpha-amylase (a common enzyme in human saliva) on amylose in starc ...
, maltotetrose, and maltopentose.


C-terminal glucase

The C-terminal glucase enzymatic unit contains extra binding sites, which allows for it to bind to larger substrates for catalytic digestion. It was originally understood that maltase-glucoamylase's crystalline structure was inherently similar throughout the N and C-termini. Further studies have found that the C-terminus is composed of 21 more amino acid residues than the N-terminus, which account for its difference in function. Sucrase-Isomaltase –– located on chromosome 3q26–– has a similar crystalline structure to maltase-glucoamylase and work in tandem in the human small intestine. They have been derived from a common ancestor, as they both come from the same GH31 family. As a result of having similar properties, both of these enzymes work together in the small intestine in order to convert consumed starch into glucose for metabolic energy. The difference between these two enzymes is that maltase-glucoamylase has a specific activity at the 1-4 linkage of sugar, where at SI has a specific activity at the 1-6 linkage.


See also

*
Alpha-glucosidase α-Glucosidase (EC 3.2.1.20, maltase, glucoinvertase, glucosidosucrase, maltase-glucoamylase, α-glucopyranosidase, glucosidoinvertase, α-D-glucosidase, α-glucoside hydrolase, α-1,4-glucosidase, α-D-glucoside glucohydrolase; systematic n ...
*
Maltase Maltase (, ''alpha-glucosidase'', ''glucoinvertase'', ''glucosidosucrase'', ''maltase-glucoamylase'', ''alpha-glucopyranosidase'', ''glucosidoinvertase'', ''alpha-D-glucosidase'', ''alpha-glucoside hydrolase'', ''alpha-1,4-glucosidase'', ''alp ...


References


Further reading

* * * * * * * *


External links


PDBe-KB
provides an overview of all the structure information available in the PDB for Human Maltase-glucoamylase, intestinal Human proteins {{biochem-stub