HOME

TheInfoList



OR:

Magnesite is a
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. ( ...
with the chemical formula (
magnesium carbonate Magnesium carbonate, (archaic name magnesia alba), is an inorganic salt that is a colourless or white solid. Several hydrated and basic forms of magnesium carbonate also exist as minerals. Forms The most common magnesium carbonate forms are ...
).
Iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
,
manganese Manganese is a chemical element with the symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of industrial alloy use ...
,
cobalt Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, pr ...
, and
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow to ...
may occur as admixtures, but only in small amounts.


Occurrence

Magnesite occurs as veins in and an alteration product of
ultramafic rocks Ultramafic rocks (also referred to as ultrabasic rocks, although the terms are not wholly equivalent) are igneous and meta-igneous rocks with a very low silica content (less than 45%), generally >18% MgO, high FeO, low potassium, and are compos ...
,
serpentinite Serpentinite is a rock composed predominantly of one or more serpentine group minerals, the name originating from the similarity of the texture of the rock to that of the skin of a snake. Serpentinite has been called ''serpentine'' or ''ser ...
and other magnesium rich rock types in both contact and regional
metamorphic Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than and, often, elevated pressure of or more, causi ...
terrains. These magnesites are often
cryptocrystalline Cryptocrystalline is a rock texture made up of such minute crystals that its crystalline nature is only vaguely revealed even microscopically in thin section by transmitted polarized light. Among the sedimentary rocks, chert and flint are crypt ...
and contain silica in the form of
opal Opal is a hydrated amorphous form of silica (SiO2·''n''H2O); its water content may range from 3 to 21% by weight, but is usually between 6 and 10%. Due to its amorphous property, it is classified as a mineraloid, unlike crystalline forms ...
or
chert Chert () is a hard, fine-grained sedimentary rock composed of microcrystalline or cryptocrystalline quartz, the mineral form of silicon dioxide (SiO2). Chert is characteristically of biological origin, but may also occur inorganically as a prec ...
. Magnesite is also present within the
regolith Regolith () is a blanket of unconsolidated, loose, heterogeneous superficial deposits covering solid rock. It includes dust, broken rocks, and other related materials and is present on Earth, the Moon, Mars, some asteroids, and other terrestria ...
above ultramafic rocks as a secondary carbonate within soil and
subsoil Subsoil is the layer of soil under the topsoil on the surface of the ground. Like topsoil, it is composed of a variable mixture of small particles such as sand, silt and clay, but with a much lower percentage of organic matter and humus, and it ...
, where it is deposited as a consequence of dissolution of magnesium-bearing minerals by carbon dioxide in groundwaters.


Isotopic structure: clumped isotope

The recent advancement in the field of stable isotope geochemistry is the study of isotopic structure of minerals and molecules. This requires study of molecules with high resolutions looking at bonding scenario (how heavy isotopes are bonded to each other)- leading to knowledge of stability of molecule depending on its isotopic structure.
Oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
has three stable isotopes (16O, 17O and 18O) and
Carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
has two (13C, 12C). A 12C16O2 molecule (composed only with most abundant isotopes of constituent elements) is called a ' monoisotopic' species. When only one atom is replaced with heavy isotope of any constituent element (ie, 13C16O2), it is called a 'singly-substituted' species. Likewise, when two atoms are simultaneously replaced with heavier isotopes (eg., 13C16O18O), it is called a 'doubly substituted' species. The 'clumped' species (13C16O18O) for CO2 is a doubly substituted CO2 molecule. Isotopically substituted molecules have higher mass. As a consequence, molecular vibration reduces and the molecule develops a lower
zero point energy Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty pr ...
(see
Kinetic isotope effect In physical organic chemistry, a kinetic isotope effect (KIE) is the change in the reaction rate of a chemical reaction when one of the atoms in the reactants is replaced by one of its isotopes. Formally, it is the ratio of rate constants for th ...
). The abundances of certain bonds in certain molecules are sensitive to temperature at which it formed (e.g., abundance of 13C16O18O in
carbonate A carbonate is a salt of carbonic acid (H2CO3), characterized by the presence of the carbonate ion, a polyatomic ion with the formula . The word ''carbonate'' may also refer to a carbonate ester, an organic compound containing the carbonate g ...
s as 13C-18O bond). This information has been exploited to form the foundation of
clumped isotope geochemistry Clumped isotopes are heavy isotopes that are bonded to other heavy isotopes. The relative abundance of clumped isotopes (and multiply-substituted isotopologues) in molecules such as methane, nitrous oxide, and carbonate is an area of active investi ...
. Clumped isotope thermometers have been established for carbonate minerals like
dolomite Dolomite may refer to: *Dolomite (mineral), a carbonate mineral *Dolomite (rock), also known as dolostone, a sedimentary carbonate rock *Dolomite, Alabama, United States, an unincorporated community *Dolomite, California, United States, an unincor ...
,
calcite Calcite is a Carbonate minerals, carbonate mineral and the most stable Polymorphism (materials science), polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on ...
,
siderite Siderite is a mineral composed of iron(II) carbonate (FeCO3). It takes its name from the Greek word σίδηρος ''sideros,'' "iron". It is a valuable iron mineral, since it is 48% iron and contains no sulfur or phosphorus. Zinc, magnesium and ...
etc and non-carbonate compounds like
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Eart ...
and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
. Depending on the strength of cation-carbonate oxygen (ie, Mg-O, Ca-O) bonds- different carbonate minerals can form or preserve clumped isotopic signatures differently.


Measurements and reporting

Clumped isotopic analysis has certain aspects to it. These are:


Digestion, analysis and acid fractionation correction

Clumped isotopic analysis is usually done by gas source mass spectrometry where the CO2 liberated from magnesite by phosphoric acid digestion is fed into the isotope ratio mass spectrometer. In such scenario, one needs to ensure that liberation of CO2 from magnesite is complete. Digesting magnesite is hard since it takes a long time and different labs report different digestion times and temperatures (from 12 hours at 100 °C to 1 hour at 90 °C in
phosphoric acid Phosphoric acid (orthophosphoric acid, monophosphoric acid or phosphoric(V) acid) is a colorless, odorless phosphorus-containing solid, and inorganic compound with the chemical formula . It is commonly encountered as an 85% aqueous solution, w ...
). Due to digestion at this high temperature, some of the 13C-18O bonds in the liberated CO2 are broken (leading to reduction in abundance of 'clumped' CO2) during phosphoric acid digestion of carbonates. To account for this additional (analytical artifact), a correction called the 'acid fractionation correction' is added to the magnesite clumped isotope value obtained at temperature of digestion. Since the CO2 gas is liberated from carbonate mineral during acid digestion, leaving one O behind- a fractionation occurs, and the isotopic composition of the analyzed CO2 gas needs to be corrected for this. For magnesite, the most reliable fractionation factor(α) equation is given as: ''103ln(α) = 6.845 ± 0.475)∗105/T2+ (4.22 ± 0.08); T in K'' Different researchers have also used other fractionation factors like dolomite fractionation factor.


Standards

While measuring samples of unknown composition, it is required to measure some standard materials (see
Reference materials for stable isotope analysis Isotopic reference materials are compounds (solids, liquids, gasses) with well-defined isotopic compositions and are the ultimate sources of accuracy in mass spectrometric measurements of isotope ratios. Isotopic references are used because mas ...
). With internal standards and reference materials, analytical session is routinely monitored. Standard materials are majorly
calcite Calcite is a Carbonate minerals, carbonate mineral and the most stable Polymorphism (materials science), polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on ...
and marble.


Δ47 - Temperature calibration

To convert clumped isotope data into temperature, a calibration curve is required which expresses the functional form of temperature dependence of clumped isotope composition. No mineral specific calibration exists for magnesite. Based on some experimental data where mineral precipitation temperature and clumped isotope derived temperature doesn't match, a need of mineral specific calibration emerges. The mismatch arises since bonding in magnesite is different from calcite/dolomite and/or acid digestion is conducted at higher temperature.


Magnesite-water and CO2-magnesite isotope fractionation factors

Using clumped isotope derived temperature, C and O isotopic composition of the parental fluid can be calculated using known magnesite-fluid isotope fractionation factors, since
fractionation Fractionation is a separation process in which a certain quantity of a mixture (of gases, solids, liquids, enzymes, or isotopes, or a suspension) is divided during a phase transition, into a number of smaller quantities (fractions) in which the ...
is temperature dependent. Reported magnesite-fluid O and C
isotope fractionation Isotope fractionation describes fractionation processes that affect the relative abundance of isotopes, phenomena which are taken advantage of in isotope geochemistry and other fields. Normally, the focus is on stable isotopes of the same element. ...
factors in literature are not in agreement with each other. The fractionation behaviors have not been substantiated by experimental observation.


Factors controlling isotopic structure in magnesite


Conversion from hydrous Mg-carbonates to magnesite

In low temperature, thus, hydrous Mg-carbonates (
hydromagnesite Hydromagnesite is a hydrated magnesium carbonate mineral with the formula Mg5(CO3)4(OH)2·4H2O. It generally occurs associated with the weathering products of magnesium containing minerals such as serpentine or brucite. It occurs as incrustations ...
,
nesquehonite Magnesium carbonate, (archaic name magnesia alba), is an inorganic salt that is a colourless or white solid. Several hydrated and basic forms of magnesium carbonate also exist as minerals. Forms The most common magnesium carbonate forms are ...
etc.) form. It is possible to convert these phases into magnesite by changing temperature by mineral dissolution-precipitation or dehydration. While so happens, an isotope effect associated can control the isotopic composition of precipitated magnesite.


Disequilibrium

Disequilibrium processes like degassing, rapid CO2 uptake etc. modify clumped isotopic composition of carbonate minerals specifically at low temperatures. They variably enrich or deplete the system in heavy isotopes of C and O. Since clumped isotope abundance depends on abundance of isotopes of C and O, they are also modified. Another very prominent effect here is that of pH of precipitating fluid. As pH of precipitating fluid changes, DIC pool is affected and isotopic composition of precipitating carbonate changes.


Mineral structure and later thermal effects

Crystalline and cryptocrystalline magnesites have very different mineral structures. While crystalline magnesite has a well developed crystal structure, the cryptocrystalline magnesite is amorphous- mostly aggregate of fine grains. Since clumped isotopic composition depends on specific bonding, difference in crystal structure is very likely to affect the way clumped isotopic signatures are recorded in these different structures. This leads to the fact that their pristine signatures might be modified differently by later thermal events like
diagenesis Diagenesis () is the process that describes physical and chemical changes in sediments first caused by water-rock interactions, microbial activity, and compaction after their deposition. Increased pressure and temperature only start to play a ...
/burial heating etc.


Formation

Magnesite can be formed via
talc carbonate Talc carbonates are a suite of rock and mineral compositions found in metamorphosed ultramafic rocks. The term refers to the two most common end-member minerals found within ultramafic rocks which have undergone talc-carbonation or carbonation rea ...
metasomatism Metasomatism (from the Greek μετά ''metá'' "change" and σῶμα ''sôma'' "body") is the chemical alteration of a rock by hydrothermal and other fluids. It is the replacement of one rock by another of different mineralogical and chemical co ...
of
peridotite Peridotite ( ) is a dense, coarse-grained igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg2+), reflecting the high prop ...
and other ultramafic rocks. Magnesite is formed via carbonation of
olivine The mineral olivine () is a magnesium iron silicate with the chemical formula . It is a type of nesosilicate or orthosilicate. The primary component of the Earth's upper mantle, it is a common mineral in Earth's subsurface, but weathers quickl ...
in the presence of water and carbon dioxide at elevated temperatures and high pressures typical of the
greenschist facies Greenschists are metamorphic rocks that formed under the lowest temperatures and pressures usually produced by regional metamorphism, typically and 2–10 kilobars (). Greenschists commonly have an abundance of green minerals such as chlorite, ...
. Magnesite can also be formed via the carbonation of magnesium serpentine (lizardite) via the following
reaction Reaction may refer to a process or to a response to an action, event, or exposure: Physics and chemistry *Chemical reaction *Nuclear reaction *Reaction (physics), as defined by Newton's third law *Chain reaction (disambiguation). Biology and me ...
: :2 Mg3Si2O5(OH)4 + 3 CO2 → Mg3Si4O10(OH)2 + 3 MgCO3 + 3 H2O However, when performing this reaction in the laboratory, the trihydrated form of
magnesium carbonate Magnesium carbonate, (archaic name magnesia alba), is an inorganic salt that is a colourless or white solid. Several hydrated and basic forms of magnesium carbonate also exist as minerals. Forms The most common magnesium carbonate forms are ...
(nesquehonite) will form at room temperature. This very observation led to the postulation of a "dehydration barrier" being involved in the low-temperature formation of anhydrous magnesium carbonate. Laboratory experiments with
formamide Formamide is an amide derived from formic acid. It is a colorless liquid which is miscible with water and has an ammonia-like odor. It is chemical feedstock for the manufacture of sulfa drugs and other pharmaceuticals, herbicides and pesticides, a ...
, a liquid resembling water, have shown how no such dehydration barrier can be involved. The fundamental difficulty to nucleate anhydrous magnesium carbonate remains when using this non-aqueous solution. Not cation dehydration, but rather the spatial configuration of carbonate anions creates the barrier in the low-temperature nucleation of magnesite. Magnesite has been found in modern sediments, caves and soils. Its low-temperature (around ) formation is known to require alternations between precipitation and dissolution intervals. The low-temperature formation of magnesite might well be of significance toward large-scale
carbon sequestration Carbon sequestration is the process of storing carbon in a carbon pool. Carbon dioxide () is naturally captured from the atmosphere through biological, chemical, and physical processes. These changes can be accelerated through changes in land ...
. A major step forward toward the industrial production of magnesite at atmospheric pressure and a temperature of 316 K was described by Vandeginste. In those experiments small additions of hydrochloric acid alternated periodically with additions of sodium carbonate solution. New was also the very short duration of only a few hours for the alternating dissolution and precipitation cycles. Magnesite was detected in
meteorite A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid, that originates in outer space and survives its passage through the atmosphere to reach the surface of a planet or Natural satellite, moon. When the ...
ALH84001 Allan Hills 84001 (ALH84001) is a fragment of a Martian meteorite that was found in the Allan Hills in Antarctica on December 27, 1984, by a team of American meteorite hunters from the ANSMET project. Like other members of the shergottite– nak ...
and on planet
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury (planet), Mercury. In the English language, Mars is named for the Mars (mythology), Roman god of war. Mars is a terr ...
itself. Magnesite was identified on Mars using
infrared spectroscopy Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or function ...
from satellite orbit. Near
Jezero Crater Jezero is a crater on Mars in the Syrtis Major quadrangle, about in diameter. Thought to have once been flooded with water, the crater contains a fan- delta deposit rich in clays. The lake in the crater was present when valley networks were for ...
, Mg-carbonates have been detected and reported to have formed in lacustrine environment prevailing there. Controversy still exists over the temperature of formation of these carbonates. Low-temperature formation has been suggested for the magnesite from the Mars-derived ALH84001 meteorite. Magnesium-rich
olivine The mineral olivine () is a magnesium iron silicate with the chemical formula . It is a type of nesosilicate or orthosilicate. The primary component of the Earth's upper mantle, it is a common mineral in Earth's subsurface, but weathers quickl ...
(
forsterite Forsterite (Mg2SiO4; commonly abbreviated as Fo; also known as white olivine) is the magnesium-rich end-member of the olivine solid solution series. It is isomorphous with the iron-rich end-member, fayalite. Forsterite crystallizes in the orthor ...
) favors production of magnesite from peridotite. Iron-rich olivine (
fayalite Fayalite (, commonly abbreviated to Fa) is the iron-rich end-member of the olivine solid-solution series. In common with all minerals in the olivine group, fayalite crystallizes in the orthorhombic system (space group ''Pbnm'') with cell para ...
) favors production of magnetite-magnesite-silica compositions. Magnesite can also be formed by way of metasomatism in
skarn Skarns or tactites are hard, coarse-grained metamorphic rocks that form by a process called metasomatism. Skarns tend to be rich in calcium-magnesium-iron-manganese-aluminium silicate minerals, which are also referred to as calc-silicate mineral ...
deposits, in
dolomitic Dolomite () is an anhydrous carbonate mineral composed of calcium magnesium carbonate, ideally The term is also used for a sedimentary carbonate rock composed mostly of the mineral dolomite. An alternative name sometimes used for the dolomiti ...
limestone Limestone ( calcium carbonate ) is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of . Limestone forms whe ...
s, associated with
wollastonite Wollastonite is a calcium inosilicate mineral ( Ca Si O3) that may contain small amounts of iron, magnesium, and manganese substituting for calcium. It is usually white. It forms when impure limestone or dolomite is subjected to high temperature ...
,
periclase Periclase is a magnesium mineral that occurs naturally in contact metamorphic rocks and is a major component of most basic refractory bricks. It is a cubic form of magnesium oxide ( Mg O). In nature it usually forms a solid solution with wüstit ...
, and
talc Talc, or talcum, is a Clay minerals, clay mineral, composed of hydrated magnesium silicate with the chemical formula Mg3Si4O10(OH)2. Talc in powdered form, often combined with corn starch, is used as baby powder. This mineral is used as a thi ...
. Resistant to high temperature and able to withstand high pressure, magnesite has been proposed to be one of the major carbonate bearing phase in Earth's mantle and possible carriers for deep carbon reservoirs. For similar reason, it is found in metamorphosed peridotite rocks in Central Alps, Switzerland and high pressure eclogitic rocks from Tianshan, China. Magnesite can also precipitate in lakes in presence of bacteria either as hydrous Mg-carbonates or magnesite.


Information from isotopic structure

Clumped isotopes have been used in interpreting conditions of magnesite formation and the isotopic composition of the precipitating fluid. Within ultramafic complexes, magnesites are found within veins and stockworks in
cryptocrystalline Cryptocrystalline is a rock texture made up of such minute crystals that its crystalline nature is only vaguely revealed even microscopically in thin section by transmitted polarized light. Among the sedimentary rocks, chert and flint are crypt ...
form as well as within carbonated peridotite units in
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
line form. These cryptocrystalline forms are mostly variably weathered and yield low temperature of formation. On the other hand, coarse magnesites yield very high temperature indicating
hydrothermal Hydrothermal circulation in its most general sense is the circulation of hot water (Ancient Greek ὕδωρ, ''water'',Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon. revised and augmented throughout by Sir Henry Stuart Jones. with th ...
origin. It is speculated that coarse high temperature magnesites are formed from mantle derived fluids whereas cryptocrystalline ones are precipitated by circulating meteoric water- taking up carbon from dissolved inorganic carbon pool, soil carbon and affected by disequilibrium isotope effects. Magnesites forming in
lake A lake is an area filled with water, localized in a basin, surrounded by land, and distinct from any river or other outlet that serves to feed or drain the lake. Lakes lie on land and are not part of the ocean, although, like the much large ...
s and playa settings are in general enriched in heavy isotopes of C and O because of evaporation and CO2 degassing. This reflects in the clumped isotope derived temperature being very low. These are affected by pH effect, biological activity as well as
kinetic isotope effect In physical organic chemistry, a kinetic isotope effect (KIE) is the change in the reaction rate of a chemical reaction when one of the atoms in the reactants is replaced by one of its isotopes. Formally, it is the ratio of rate constants for th ...
associated with degassing. Magnesite forms as surface moulds in such conditions but more generally occur as hydrous Mg-carbonates since their precipitation is kinetically favored. Most of the times, they derive C from DIC or nearby ultramafic complexes (e.g., Altin Playa, British Columbia, Canada). Magnesites in metamorphic rocks, on the other hand, indicate very high temperature of formation. Isotopic composition of parental fluid is also heavy- generally metamorphic fluids. This has been verified by fluid inclusion derived temperature as well as traditional O isotope thermometry involving co-precipitating quartz-magnesite. Often, magnesite records lower clumped isotope temperature than associated dolomite, calcite. The reason might be that calcite, dolomite form earlier at higher temperature (from mantle like fluids) which increases Mg/Ca ratio in the fluid sufficiently so as to precipitate magnesite. As this happens with increasing time, fluid cools, evolves by mixing with other fluids and when it forms magnesite, it decreases its temperature. So the presence of associated carbonates have a control on magnesite isotopic composition. Origin of Martian carbonates can be deconvolved with the application of clumped isotope. Source of the CO2, climatic-hydrologic conditions on Mars could be assessed from these rocks. Recent study has shown (implementing clumped isotope thermometry) that carbonates in
ALH84001 Allan Hills 84001 (ALH84001) is a fragment of a Martian meteorite that was found in the Allan Hills in Antarctica on December 27, 1984, by a team of American meteorite hunters from the ANSMET project. Like other members of the shergottite– nak ...
indicate formation at low temperature evaporative condition from subsurface water and derivation of CO2 from Martian atmosphere.


Uses


Refractory material

Similar to the production of lime, magnesite can be burned in the presence of charcoal to produce
MgO Magnesium oxide ( Mg O), or magnesia, is a white hygroscopic solid mineral that occurs naturally as periclase and is a source of magnesium (see also oxide). It has an empirical formula of MgO and consists of a lattice of Mg2+ ions and O2− ions ...
, which, in the form of a mineral, is known as
periclase Periclase is a magnesium mineral that occurs naturally in contact metamorphic rocks and is a major component of most basic refractory bricks. It is a cubic form of magnesium oxide ( Mg O). In nature it usually forms a solid solution with wüstit ...
. Large quantities of magnesite are burnt to make
magnesium oxide Magnesium oxide ( Mg O), or magnesia, is a white hygroscopic solid mineral that occurs naturally as periclase and is a source of magnesium (see also oxide). It has an empirical formula of MgO and consists of a lattice of Mg2+ ions and O2− ions ...
: an important
refractory In materials science, a refractory material or refractory is a material that is resistant to decomposition by heat, pressure, or chemical attack, and retains strength and form at high temperatures. Refractories are polycrystalline, polyphase, ...
(heat-resistant) material used as a lining in
blast furnace A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron, but also others such as lead or copper. ''Blast'' refers to the combustion air being "forced" or supplied above atmospheric ...
s,
kiln A kiln is a thermally insulated chamber, a type of oven, that produces temperatures sufficient to complete some process, such as hardening, drying, or chemical changes. Kilns have been used for millennia to turn objects made from clay int ...
s and
incinerators Incineration is a list of solid waste treatment technologies, waste treatment process that involves the combustion of substances contained in waste materials. Industrial plants for waste incineration are commonly referred to as waste-to-ene ...
. Calcination temperatures determine the reactivity of resulting oxide products and the classifications of light burnt and dead burnt refer to the surface area and resulting reactivity of the product (this is typically determined by an industry metric of the iodine number). 'Light burnt' product generally refers to calcination commencing at 450 °C and proceeding to an upper limit of 900 °C – which results in good surface area and reactivity. Above 900 °C, the material loses its reactive crystalline structure and reverts to the chemically inert 'dead-burnt' product- which is preferred for use in refractory materials such as furnace linings. In fire assay, magnesite cupels can be used for
cupellation Cupellation is a refining process in metallurgy where ores or alloyed metals are treated under very high temperatures and have controlled operations to separate noble metals, like gold and silver, from base metals, like lead, copper, zinc, arse ...
, as the magnesite cupel will resist the high temperatures involved.


Other uses

Magnesite can also be used as a binder in flooring material ( magnesite screed). Furthermore, it is being used as a catalyst and filler in the production of
synthetic rubber A synthetic rubber is an artificial elastomer. They are polymers synthesized from petroleum byproducts. About 32-million metric tons of rubbers are produced annually in the United States, and of that amount two thirds are synthetic. Synthetic rubbe ...
and in the preparation of magnesium chemicals and fertilizers. Research is proceeding to evaluate the practicality of sequestering the
greenhouse gas A greenhouse gas (GHG or GhG) is a gas that Absorption (electromagnetic radiation), absorbs and Emission (electromagnetic radiation), emits radiant energy within the thermal infrared range, causing the greenhouse effect. The primary greenhouse ...
carbon dioxide Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
in magnesite on a large scale. This has focused on peridotites from
ophiolite An ophiolite is a section of Earth's oceanic crust and the underlying upper mantle that has been uplifted and exposed above sea level and often emplaced onto continental crustal rocks. The Greek word ὄφις, ''ophis'' (''snake'') is found ...
s (obducted mantle rocks on crust) where magnesite can be created by letting carbon dioxide react with these rocks. Some progress has been made in ophiolites from Oman. But the major problem is that these artificial processes require sufficient porosity-permeability so that the fluids can flow but this is hardly the case in
peridotite Peridotite ( ) is a dense, coarse-grained igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg2+), reflecting the high prop ...
s.


Artworks

Magnesite can be cut, drilled, and polished to form beads that are used in jewelry-making. Magnesite beads can be dyed into a broad spectrum of bold colors, including a light blue color that mimics the appearance of
turquoise Turquoise is an opaque, blue-to-green mineral that is a hydrated phosphate of copper and aluminium, with the chemical formula . It is rare and valuable in finer grades and has been prized as a gemstone and ornamental stone for thousands of yea ...
. The Japanese-American artist
Isamu Noguchi was an American artist and landscape architect whose artistic career spanned six decades, from the 1920s onward. Known for his sculpture and public artworks, Noguchi also designed stage sets for various Martha Graham productions, and several ...
used magnesite as a sculptural material for some of his artworks.


Occupational safety and health

People can be exposed to magnesite in the workplace by inhaling it, skin contact, and eye contact.


United States

The
Occupational Safety and Health Administration The Occupational Safety and Health Administration'' (OSHA ) is a large regulatory agency of the United States Department of Labor that originally had federal visitorial powers to inspect and examine workplaces. Congress established the agenc ...
(OSHA) has set the legal limit (
permissible exposure limit The permissible exposure limit (PEL or OSHA PEL) is a legal limit in the United States for exposure of an employee to a chemical substance or physical agent such as high level noise. Permissible exposure limits are established by the Occupational ...
) for magnesite exposure in the workplace as 15 mg/m3 total exposure and 5 mg/m3 respiratory exposure over an 8-hour workday. The
National Institute for Occupational Safety and Health The National Institute for Occupational Safety and Health (NIOSH, ) is the United States federal agency responsible for conducting research and making recommendations for the prevention of work-related injury and illness. NIOSH is part of the C ...
(NIOSH) has set a
recommended exposure limit A recommended exposure limit (REL) is an occupational exposure limit that has been recommended by the United States National Institute for Occupational Safety and Health. The REL is a level that NIOSH believes would be protective of worker safet ...
(REL) of 10 mg/m3 total exposure and 5 mg/m3 respiratory exposure over an 8-hour workday.


References

* Smithsonian Rock and Gem {{Authority control Magnesium minerals Carbonate minerals Calcite group Trigonal minerals Minerals in space group 167 Luminescent minerals Evaporite