HOME

TheInfoList



OR:

''MESSENGER'' was a
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedi ...
robotic space probe that orbited the
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a ...
Mercury between 2011 and 2015, studying Mercury's chemical composition,
geology Geology () is a branch of natural science concerned with Earth and other astronomical objects, the features or rocks of which it is composed, and the processes by which they change over time. Modern geology significantly overlaps all other Ea ...
, and magnetic field. The name is a backronym for "Mercury Surface, Space Environment, Geochemistry, and Ranging", and a reference to the messenger god Mercury from
Roman mythology Roman mythology is the body of myths of ancient Rome as represented in the literature and visual arts of the Romans. One of a wide variety of genres of Roman folklore, ''Roman mythology'' may also refer to the modern study of these represent ...
. ''MESSENGER'' was launched aboard a Delta II rocket in August 2004. Its path involved a complex series of flybys – the spacecraft flew by
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surf ...
once, Venus twice, and Mercury itself three times, allowing it to decelerate relative to Mercury using minimal fuel. During its first flyby of Mercury in January 2008, ''MESSENGER'' became the second mission, after Mariner 10 in 1975, to reach Mercury. ''MESSENGER'' entered orbit around Mercury on March 18, 2011, becoming the first spacecraft to do so. It successfully completed its primary mission in 2012. Following two mission extensions, the spacecraft used the last of its maneuvering propellant to deorbit, impacting the surface of Mercury on April 30, 2015.


Mission overview

''MESSENGERs formal data collection mission began on April 4, 2011. The primary mission was completed on March 17, 2012, having collected close to 100,000 images. ''MESSENGER'' achieved 100% mapping of Mercury on March 6, 2013, and completed its first year-long extended mission on March 17, 2013. ''MESSENGER''s second extended mission lasted for over two years, but as its low orbit degraded, it required reboosts to avoid impact. It conducted its final reboost burns on October 24, 2014, and January 21, 2015, before crashing into Mercury on April 30, 2015. During its stay in Mercury orbit, ''MESSENGER'''s instruments yielded significant data, including a characterization of Mercury's magnetic field and the discovery of water ice at the planet's north pole, which had long been suspected on the basis of Earth-based radar data.


Mission background


Previous missions

In 1973, Mariner 10 was launched by NASA to make multiple flyby encounters of Venus and Mercury. Mariner 10 provided the first detailed data of Mercury, mapping 40–45% of the surface. Mariner 10's final flyby of Mercury occurred on March 16, 1975. No subsequent close-range observations of the planet would take place for more than 30 years.


Proposals for the mission

In 1998, a study detailed a proposed mission to send an orbiting spacecraft to Mercury, as the planet was at that point the least-explored of the inner planets. In the years following the Mariner 10 mission, subsequent mission proposals to revisit Mercury had appeared too costly, requiring large quantities of propellant and a heavy lift launch vehicle. Moreover, inserting a spacecraft into orbit around Mercury is difficult, because a probe approaching on a direct path from Earth would be accelerated by the Sun's gravity and pass Mercury far too quickly to orbit it. However, using a trajectory designed by Chen-wan Yen in 1985, the study showed it was possible to seek a Discovery-class mission by using multiple, consecutive gravity assist, 'swingby' maneuvers around Venus and Mercury, in combination with minor propulsive trajectory corrections, to gradually slow the spacecraft and thereby minimize propellant needs.


Objectives

The ''MESSENGER'' mission was designed to study the characteristics and environment of Mercury from orbit. Specifically, the scientific objectives of the mission were: * to characterize the chemical composition of Mercury's surface. * to study the planet's geologic history. * to elucidate the nature of the global magnetic field ( magnetosphere). * to determine the size and state of the core. * to determine the volatile inventory at the poles. * to study the nature of Mercury's exosphere.


Spacecraft design

The ''MESSENGER'' spacecraft was designed and built at the
Johns Hopkins University Johns Hopkins University (Johns Hopkins, Hopkins, or JHU) is a private research university in Baltimore, Maryland. Founded in 1876, Johns Hopkins is the oldest research university in the United States and in the western hemisphere. It consiste ...
Applied Physics Laboratory. Science operations were managed by Sean Solomon as principal investigator, and mission operations were also conducted at JHU/APL. The ''MESSENGER''
bus A bus (contracted from omnibus, with variants multibus, motorbus, autobus, etc.) is a road vehicle that carries significantly more passengers than an average car or van. It is most commonly used in public transport, but is also in use for cha ...
measured tall, wide, and deep. The bus was primarily constructed with four
graphite fiber Carbon fibers or carbon fibres (alternatively CF, graphite fiber or graphite fibre) are fibers about in diameter and composed mostly of carbon atoms. Carbon fibers have several advantages: high stiffness, high tensile strength, high stren ...
/ cyanate ester composite panels that supported the propellant tanks, the large velocity adjust (LVA) thruster, attitude monitors and correction thrusters, the antennas, the instrument pallet, and a large ceramic-cloth sunshade, measuring tall and wide, for passive thermal control. At launch, the spacecraft weighed approximately with its full load of propellant. ''MESSENGER'''s total mission cost, including the cost of the spacecraft's construction, was estimated at under US$450 million.


Attitude control and propulsion

Main propulsion was provided by the 645  N, 317 sec. Isp bipropellant ( hydrazine and nitrogen tetroxide) large velocity assist (LVA) thruster. The model used was the LEROS 1b, developed and manufactured at AMPAC‐ISP's Westcott works, in the United Kingdom. The spacecraft was designed to carry of propellant and
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
pressurizer for the LVA. Four monopropellant thrusters provided spacecraft steering during main thruster burns, and twelve monopropellant thrusters were used for attitude control. For precision attitude control, a reaction wheel attitude control system was also included. Information for attitude control was provided by star trackers, an inertial measurement unit and six sun sensors.


Communications

The probe included two small deep space transponders for communications with the Deep Space Network and three kinds of antennas: a high gain phased array whose main beam could be electronically steered in one plane, a medium-gain "fan-beam" antenna and a low gain horn with a broad pattern. The high gain antenna was used as transmit-only at 8.4 GHz, the medium-gain and low gain antennas transmit at 8.4 GHz and receive at 7.2 GHz, and all three antennas operate with right-hand circularly polarized (RHCP) radiation. One of each of these antennas was mounted on the front of the probe facing the Sun, and one of each was mounted to the back of the probe facing away from the Sun.


Power

The space probe was powered by a two-panel gallium arsenide/ germanium solar array providing an average of 450
watt The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James Wa ...
s while in Mercury orbit. Each panel was rotatable and included optical solar reflectors to balance the temperature of the array. Power was stored in a common-pressure-vessel, 23-
ampere The ampere (, ; symbol: A), often Clipping (morphology), shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One amp ...
-hour nickel–hydrogen battery, with 11 vessels and two cells per vessel.


Computer and software

The spacecraft's onboard computer system was contained in an Integrated Electronics Module (IEM), a device that combined core avionics into a single box. The computer featured two radiation-hardened
IBM RAD6000 The RAD6000 radiation-hardened single-board computer, based on the IBM RISC Single Chip CPU, was manufactured by IBM Federal Systems. IBM Federal Systems was sold to Loral, and by way of acquisition, ended up with Lockheed Martin and is curr ...
s, a 25  megahertz main processor, and a 10 MHz fault protection processor. For redundancy, the spacecraft carried a pair of identical IEMs. For data storage, the spacecraft carried two
solid-state Solid state, or solid matter, is one of the four fundamental states of matter. Solid state may also refer to: Electronics * Solid-state electronics, circuits built of solid materials * Solid state ionics, study of ionic conductors and their ...
recorders able to store up to one gigabyte each. The IBM RAD6000 main processor collected, compressed, and stored data from ''MESSENGER'''s instruments for later playback to Earth. ''MESSENGER'' used a software suite called SciBox to simulate its orbit and instruments, in order to "choreograph the complicated process of maximizing the scientific return from the mission and minimizing conflicts between instrument observations, while at the same time meeting all spacecraft constraints on pointing, data downlink rates, and onboard data storage capacity."


Scientific instruments


Mercury Dual Imaging System (MDIS)

Included two CCD cameras, a narrow-angle camera (NAC) and a wide-angle camera (WAC) mounted to a pivoting platform. The camera system provided a complete map of the surface of Mercury at a resolution of 250 meters/pixel, and images of regions of geologic interest at 20–50 meters/pixel. Color imaging was possible only with the narrow-band filter wheel attached to the wide-angle camera. Objectives: *Flyby Phase: ** Acquisition of near-global coverage at ≈500-meters/
pixel In digital imaging, a pixel (abbreviated px), pel, or picture element is the smallest addressable element in a raster image, or the smallest point in an all points addressable display device. In most digital display devices, pixels are the s ...
. ** Multispectral mapping at ≈2-kilometers/pixel. * Orbital Phase: ** A nadir-looking monochrome global photomosaic at moderate solar incidence angles (55°–75°) and 250-meters/pixel or better sampling resolution. ** A 25°-off-nadir mosaic to complement the nadir-looking mosaic for global stereo mapping. ** Completion of the multispectral mapping begun during the flybys. ** High-resolution (20–50-meters/pixel) image strips across features representative of major geologic units and structures. :''Principal investigator: Scott Murchie / Johns Hopkins University'' :''Data
PDS/MODE narrow-angle catalogPDS/MODE wide-angle catalog
'


Gamma-Ray Spectrometer (GRS)

Measured gamma-ray emissions from the surface of Mercury to determine the planet's composition by detecting certain elements (
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as we ...
, silicon, sulfur,
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
,
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
,
potassium Potassium is the chemical element with the symbol K (from Neo-Latin '' kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosp ...
, thorium, uranium) to a depth of 10 cm. Objectives: * Provide surface abundances of major elements. * Provide surface abundances of Fe, Si, and K, infer alkali depletion from K abundances, and provide abundance limits on H (water ice) and S (if present) at the poles. * Map surface element abundances where possible, and otherwise provide surface-averaged abundances or establish upper limits. :''Principal investigator: William Boynton / University of Arizona'' :''Data
PDS/GSN data catalogPDS/MODE GRS data catalog
'


Neutron Spectrometer (NS)

Determined the hydrogen mineral composition to a depth of 40 cm by detecting low-energy neutrons resulting from the collision of cosmic rays with the minerals. Objectives: * Establish and map the abundance of hydrogen over most of the northern hemisphere of Mercury. * Investigate the possible presence of water ice within and near permanently shaded craters near the north pole. * Provide secondary evidence to aid in interpreting GRS measured gamma-ray line strengths in terms of elemental abundances. * Outline surface domains at the base of both northern and southern cusps of the magnetosphere where the solar wind can implant hydrogen in surface material. :''Principal investigator: William Boynton / University of Arizona'' :''Data


PDS/MODE NS data catalog
'


X-Ray Spectrometer (XRS)

Mapped mineral composition within the top millimeter of the surface on Mercury by detecting X-ray
spectral line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to iden ...
s from magnesium,
aluminum Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It h ...
, sulphur,
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar t ...
, titanium, and iron, in the 1–10  keV range. Objectives: * Determine the history of the formation of Mercury * Characterize the composition of surface elements by measuring the X-ray emissions induced by the incident solar flux. :''Principal investigator: George Ho / APL'' :''Data
PDS/GSN data catalogPDS/MODE data catalog
'


Magnetometer (MAG)

Measured the magnetic field around Mercury in detail to determine the strength and average position of the field. Objectives: * Investigate the structure of Mercury's magnetic field and its interaction with the solar wind. * Characterize the geometry and time variability of the magnetospheric field. * Detect wave-particle interactions with the magnetosphere. * Observe magnetotail dynamics, including phenomena possibly analogous to substorms in the Earth's magnetosphere. * Characterize the magnetopause structure and dynamics. * Characterize field-aligned currents that link the planet with the magnetosphere. :''Principal investigator: Mario Acuna / NASA Goddard Space Flight Center'' :''Data
PDS/PPI data catalog
'


Mercury Laser Altimeter (MLA)

Provided detailed information regarding the height of landforms on the surface of Mercury by detecting the light of an infrared laser as the light bounced off the surface. Objectives: * Provide a high-precision topographic map of the high northern latitude regions. * Measure the long-wavelength topographic features at mid-to-low northern latitudes. * Determine topographic profiles across major geologic features in the northern hemisphere. * Detect and quantify the planet's forced physical librations by tracking the motion of large-scale topographic features as a function of time. * Measure the surface reflectivity of Mercury at the MLA operating wavelength of 1,064 nanometers. :''Principal investigator: David Smith / GSFC'' :''Data
PDS/MODE data catalog
'


Mercury Atmospheric and Surface Composition Spectrometer (MASCS)

Determined the characteristics of the tenuous atmosphere surrounding Mercury by measuring ultraviolet light emissions, and ascertained the prevalence of iron and titanium minerals on the surface by measuring the
reflectance The reflectance of the surface of a material is its effectiveness in Reflection (physics), reflecting radiant energy. It is the fraction of incident electromagnetic power that is reflected at the boundary. Reflectance is a component of the respon ...
of infrared light. Objectives: * Characterize the composition, structure, and temporal behavior of the exosphere. * Investigate the processes that generate and maintain the exosphere. * Determine the relationship between exospheric and surface composition. * Search for polar deposits of volatile material, and determine how are the accumulation of these deposits are related to exospheric processes. :''Principal investigator: William McClintock / University of Colorado'' :''Data
PDS/GSN data catalogPDS/MODE data catalog
'


Energetic Particle and Plasma Spectrometer (EPPS)

Measured the
charged particles In physics, a charged particle is a particle with an electric charge. It may be an ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons. It can also be an electron or a proton, or another elementary pa ...
in the magnetosphere around Mercury using an energetic particle spectrometer (EPS) and the charged particles that come from the surface using a fast imaging plasma spectrometer (FIPS). Objectives: * Determine the structure of the planet's magnetic field. * Characterize exosphere neutrals and accelerated magnetospheric ions. * Determine the composition of the radar-reflective materialmaterials gyms at Mercury's poles. * Determine the electrical properties of the crust/atmosphere/environment interface. * Determine characteristics of the dynamics of Mercury's magnetosphere and their relationships to external drivers and their internal conditions. * Measure interplanetary plasma properties in cruise and in Mercury vicinity. :''Principal investigator: Barry Mauk / APL'' :''Data
PDS/PPI data catalog
'


Radio Science (RS)

Measured the gravity of Mercury and the state of the planetary core by utilizing the spacecraft's positioning data. Objectives: * Determine the position of the spacecraft during both the cruise and orbital phases of the mission. * Observe gravitational perturbations from Mercury to investigate the spatial variations of density within the planet's interior, and a time-varying component in Mercury's gravity to quantify the amplitude of Mercury's libration. * Provide precise measurements of the range of the ''MESSENGER'' spacecraft to the surface of Mercury for determining proper altitude mapping with the MLA. :''Principal investigator: David Smith / NASA Goddard Space Flight Center'' :''Data
PDS/GSN data catalogPDS/MODE data catalog
'
File:MESSENGER - Sonda.png, alt=Diagram of ''MESSENGER'', Diagram of ''MESSENGER''. File:MESSENGER - installation of solar panels.jpg, alt=MESSENGER assembly installation of solar panels Astrotech, The assembly of ''MESSENGER''s solar panels by APL technicians. File:MESSENGER Assembly.jpg, alt=Technicians prepare MESSENGER for transfer to a hazardous processing facility, Technicians prepare ''MESSENGER'' for transfer to a hazardous processing facility. File:MESSENGER 04pd1465.jpg, alt=Attachment of the Payload Assist Module to MESSENGER. The ceramic-cloth sunshade is prominent in this view, Attachment of the PAM to ''MESSENGER''. The ceramic-cloth sunshade is prominent in this view. File:Hypergolic Fuel for MESSENGER.jpg, alt= A suited worker looks over the hydrazine fuel supply to be loaded in MESSENGER., A suited worker looks over the hydrazine fuel supply to be loaded in ''MESSENGER''.


Mission profile


Launch and trajectory

The ''MESSENGER'' probe was launched on August 3, 2004, at 06:15:56 UTC by
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedi ...
from Space Launch Complex 17B at the Cape Canaveral Air Force Station in Florida, aboard a Delta II 7925 launch vehicle. The complete burn sequence lasted 57 minutes bringing the spacecraft into a heliocentric orbit, with a final velocity of 10.68 km/s (6.64 miles/s) and sending the probe into a 7.9 billion-kilometer trajectory that took 6 years, 7 months and 16 days before its orbital insertion on March 18, 2011. Traveling to Mercury and entering orbit requires an extremely large velocity change (''see delta-v'') because Mercury's orbit is deep in the Sun's gravity well. On a direct course from Earth to Mercury, a spacecraft is constantly accelerated as it falls toward the Sun, and will arrive at Mercury with a velocity too high to achieve orbit without excessive use of fuel. For planets with an atmosphere, such as Venus and Mars, spacecraft can minimize their fuel consumption upon arrival by using friction with the atmosphere to enter orbit ( aerocapture), or can briefly fire their rocket engines to enter into orbit followed by a reduction of the orbit by aerobraking. However, the tenuous atmosphere of Mercury is far too thin for these maneuvers. Instead, ''MESSENGER'' extensively used gravity assist maneuvers at Earth, Venus, and Mercury to reduce the speed relative to Mercury, then used its large rocket engine to enter into an elliptical orbit around the planet. The multi-flyby process greatly reduced the amount of propellant necessary to slow the spacecraft, but at the cost of prolonging the trip by many years and to a total distance of 7.9 billion kilometers (4.9 billion miles). Several planned thruster firings en route to Mercury were unnecessary, because these fine course adjustments were performed using solar radiation pressure acting on MESSENGER's solar panels. To further minimize the amount of necessary propellant, the spacecraft orbital insertion targeted a highly elliptical orbit around Mercury. The elongated orbit had two other benefits: It allowed the spacecraft time to cool after the times it was between the hot surface of Mercury and the Sun, and also it allowed the spacecraft to measure the effects of solar wind and the magnetic fields of the planet at various distances while still allowing close-up measurements and photographs of the surface and exosphere. The spacecraft was originally scheduled to launch during a 12-day window that beginning May 11, 2004. On March 26, 2004, NASA announced the launch would be moved to a later, 15-day launch window beginning July 30, 2004, to allow for further testing of the spacecraft. This change significantly altered the trajectory of the mission and delayed the arrival at Mercury by two years. The original plan called for three fly-by maneuvers past Venus, with Mercury orbit insertion scheduled for 2009. The trajectory was changed to include one Earth flyby, two Venus flybys, and three Mercury flybys before orbit insertion on March 18, 2011. File:MESSENGER - exploded launch vehicle diagram.png, alt=Exploded launch configuration diagram with MESSENGER and Delta 2 rocket, Exploded diagram of Delta II launch vehicle with ''MESSENGER'' File:MESSENGER launch on Delta 7925 rocket.jpg, alt=The launch of MESSENGER on a Delta II launch vehicle, The launch of ''MESSENGER'' on a Delta II launch vehicle. File:Animation of MESSENGER trajectory.gif, Animation of ''MESSENGER'' trajectory from August 3, 2004, to May 1, 2015
File:MESSENGER trajectory.svg, alt=Interplanetary trajectory of ''MESSENGER'' orbiter, Interplanetary trajectory of the ''MESSENGER'' orbiter.


Earth flyby

''MESSENGER'' performed an Earth flyby one year after launch, on August 2, 2005, with the closest approach at 19:13 UTC at an altitude of 2,347 kilometers (1,458 statute miles) over central
Mongolia Mongolia; Mongolian script: , , ; lit. "Mongol Nation" or "State of Mongolia" () is a landlocked country in East Asia, bordered by Russia to the north and China to the south. It covers an area of , with a population of just 3.3 millio ...
. On December 12, 2005, a 524-second-long burn (Deep-Space Maneuver or DSM-1) of the large thruster adjusted the trajectory for the upcoming Venus flyby by 316 m/s. During the Earth flyby, the ''MESSENGER'' team imaged the Earth and Moon using MDIS and checked the status of several other instruments observing the atmospheric and surface compositions and testing the magnetosphere and determining that all instruments tested were working as expected. This calibration period was intended to ensure accurate interpretation of data when the spacecraft entered orbit around Mercury. Ensuring that the instruments functioned correctly at such an early stage in the mission allowed opportunity for multiple minor errors to be dealt with. The Earth flyby was used to investigate the flyby anomaly, where some spacecraft have been observed to have trajectories that differ slightly from those predicted. However no anomaly was observed in MESSENGER's flyby. File:MESSENGERearth.jpg, alt=A view of Earth from ''MESSENGER'' during its Earth flyby, A view of Earth from ''MESSENGER'' during its Earth flyby. File:View of Earth from MESSENGER.jpg, alt=Another view of Earth from ''MESSENGER'' during its Earth flyby, A view of Earth from ''MESSENGER'' during its Earth flyby. File:Earth and Moon seen from 183 million kilometers by MESSENGER.png, alt=The Earth and Moon captured by the MESSENGER Wide Angle Camera from a distance of 183 million kilometers, The
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surf ...
and
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width ...
(lower left), captured by ''MESSENGER'' from a distance of 183 million kilometers. File:Mdis depart anot.ogv, alt=Departure sequence captured as Messenger flew past Earth on August 3, 2005, Earth flyby sequence captured on August 3, 2005 ( Full-size video).


Two Venus flybys

On October 24, 2006, at 08:34 UTC, ''MESSENGER'' encountered Venus at an altitude of . During the encounter, ''MESSENGER'' passed behind Venus and entered superior conjunction, a period when Earth was on the exact opposite side of the Solar System, with the Sun inhibiting radio contact. For this reason, no scientific observations were conducted during the flyby. Communication with the spacecraft was reestablished in late November and performed a deep space maneuver on December 12, to correct the trajectory to encounter Venus in a second flyby. On June 5, 2007, at 23:08 UTC, ''MESSENGER'' performed a second flyby of Venus at an altitude of , for the greatest velocity reduction of the mission. During the encounter, all instruments were used to observe Venus and prepare for the following Mercury encounters. The encounter provided visible and near-infrared imaging data of the upper atmosphere of Venus.
Ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiati ...
and X-ray spectrometry of the upper atmosphere were also recorded, to characterize the composition. The ESA's Venus Express was also orbiting during the encounter, providing the first opportunity for simultaneous measurement of particle-and-field characteristics of the planet. File:MESSENGERvenus1approach.jpg, alt=Venus Imaged by MESSENGER on the first flyby of the planet, Venus imaged by ''MESSENGER'' on its first flyby of the planet in 2006. File:Venus 2 Approach Image.jpg, alt=Venus imaged by MESSENGER on the second flyby of the planet, Venus imaged by ''MESSENGER'' on its second flyby of the planet in 2007. File:MESSENGER - Venus 630 nm stretch.jpg, alt=A more detailed image of Venus by MESSENGER on the second flyby of the planet, A more detailed image of Venus ''MESSENGER'' on the second flyby of the planet. File:MESSENGER - Venus2 departure seq.jpg, alt=Sequence of images as MESSENGER departs after the second flyby of the planet, Sequence of images as ''MESSENGER'' departs after the second flyby of the planet.


Three Mercury flybys

''MESSENGER'' made a flyby of Mercury on January 14, 2008 (making its closest approach of 200 km above the surface of Mercury at 19:04:39 UTC), followed by a second flyby on October 6, 2008. ''MESSENGER'' executed a final flyby on September 29, 2009, further slowing down the spacecraft. Sometime during the closest approach of the last flyby, the spacecraft entered safe mode. Although this had no effect on the trajectory necessary for later orbit insertion, it resulted in the loss of science data and images that were planned for the outbound leg of the fly-by. The spacecraft had fully recovered by about seven hours later. One last deep space maneuver, DSM-5, was executed on November 24, 2009, at 22:45 UTC to provide the required 0.177 km/s velocity change for the scheduled Mercury orbit insertion on March 18, 2011, marking the beginning of the orbital mission. File:Mercury in color c1000 700 430.png, alt=The first high-resolution color Wide Angle Camera image of Mercury acquired by MESSENGER, The first high-resolution color Wide Angle Camera image of Mercury acquired by ''MESSENGER''. File:MESSENGER first photo of unseen side of mercury.jpg, alt=Mercury from later in the first flyby, Mercury from later in the first flyby, showing many previously unknown features File:CW0131775256F Kuiper Crater.png, alt=View from the second flyby in October 2008, View from the second flyby in October 2008, with Kuiper crater near center File:MESSENGER - CN0162744010M RA 3 web.png, alt=Smooth plains on Mercury imaged by MESSENGER during the third flyby of the planet., Smooth plains of Borealis Planitia imaged by ''MESSENGER'' during the third flyby of the planet. File:MESSENGER EN0108828359M.png, alt=An image of part of the previously unseen side of the planet, An image of part of the previously unseen side of the planet. File:MESSENGER - BV Microsymposium49.jpg, alt=Lava-flooded craters and large expanses of smooth volcanic plains on Mercury., Lava-flooded craters and large expanses of smooth volcanic plains on Mercury. File:Rachmaninoff crater.png, alt=A photo of Mercury with Rachmaninoff crater centered, View with Rachmaninoff crater, from third flyby


Orbital insertion

The thruster maneuver to insert the probe into Mercury's orbit began at 00:45 UTC on March 18, 2011. The 0.9 km/s (0.5 mi./sec.) braking maneuver lasted about 15 minutes, with confirmation that the craft was in Mercury orbit received at 01:10 UTC on March 18 (9:10 PM, March 17 EDT). Mission lead engineer Eric Finnegan indicated that the spacecraft had achieved a near-perfect orbit. ''MESSENGERs orbit was highly elliptical, taking it within of Mercury's surface and then away from it every twelve hours. This orbit was chosen to shield the probe from the heat radiated by Mercury's hot surface. Only a small portion of each orbit was at a low altitude, where the spacecraft was subjected to radiative heating from the hot side of the planet. File:Animation of MESSENGER trajectory around Mercury.gif, Animation of ''MESSENGER'' trajectory around Mercury from March 15, 2011, to December 30, 2014
File:MESSENGERannouncement.jpg, alt=Charles Bolden and colleagues wait for news from MESSENGER., Charles Bolden and colleagues wait for news from the ''MESSENGER'' probe. File:Celebrating Mercury Orbit.jpg, alt=Charles Bolden congratulates Eric Finnegan as the spacecraft successfully inserted itself in Mercury's orbit., Charles Bolden congratulates Eric Finnegan following the successful orbital insertion. File:First ever photograph from Mercury orbit.jpg, alt=The first-ever photograph from Mercury orbit, taken by MESSENGER on March 29, 2011., The first-ever photograph from Mercury orbit, taken by ''MESSENGER'' on March 29, 2011. File:MercuryOrbitInsertionDirectionofSunFull.jpg, alt=A Chart of MESSENGER's Orbital Insertion, A simplified chart showing the path of ''MESSENGER''s orbital insertion.


Primary science

After ''MESSENGERs orbital insertion, an eighteen-day commissioning phase took place. The supervising personnel switched on and tested the craft's science instruments to ensure they had completed the journey without damage. The commissioning phase "demonstrated that the spacecraft and payload ereall operating nominally, notwithstanding Mercury's challenging environment." The primary mission began as planned on April 4, 2011, with ''MESSENGER'' orbiting Mercury once every twelve hours for an intended duration of twelve Earth months, the equivalent of two solar days on Mercury."MESSENGER Kicks Off Yearlong Campaign of Mercury Science"
. JHU – APL. April 4, 2011. Retrieved November 23, 2011.
Principal Investigator Sean Solomon, then of the Carnegie Institution of Washington, said: "With the beginning today of the primary science phase of the mission, we will be making nearly continuous observations that will allow us to gain the first global perspective on the innermost planet. Moreover, as solar activity steadily increases, we will have a front-row seat on the most dynamic magnetosphere–atmosphere system in the Solar System." On October 5, 2011, the scientific results obtained by ''MESSENGER'' during its first six terrestrial months in Mercury's orbit were presented in a series of papers at the European Planetary Science Congress in Nantes, France."MESSENGER Team Presents New Mercury Findings at Planetary Conference"
.
Johns Hopkins University Johns Hopkins University (Johns Hopkins, Hopkins, or JHU) is a private research university in Baltimore, Maryland. Founded in 1876, Johns Hopkins is the oldest research university in the United States and in the western hemisphere. It consiste ...
Applied Physics Laboratory. October 5, 2011. Retrieved November 23, 2011.
Among the discoveries presented were the unexpectedly high concentrations of magnesium and
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar t ...
found on Mercury's nightside, and the fact that Mercury's magnetic field is offset far to the north of the planet's center. File:MESSENGERmercurylimb.PNG, alt=A Monochrome view of Mercury from MESSENGER, A monochrome image of Mercury from ''MESSENGER'', with Warhol at center. File:Stevenson crater (MESSENGER).png, alt=Crater Stevenson, with crater chains forming an 'x' across its surface,
Stevenson Stevenson is an English language patronymic surname meaning "son of Steven". Its first historical record is from pre-10th-century England. Another origin of the name is as a toponymic surname related to the place Stevenstone in Devon, England. The ...
crater, with two perpendicular secondary crater chains running through its center. File:MESSENGERsouthpole.png, alt=A South Polar Projection of Mercury, A south
polar projection The azimuthal equidistant projection is an azimuthal map projection. It has the useful properties that all points on the map are at proportionally correct distances from the center point, and that all points on the map are at the correct azimut ...
of Mercury. File:MESSENGERridges.png, alt=A close snapshot of Ridges near the South Pole, A close snapshot of ridges near Mercury's south pole. File:Tectonically Active Planet Mercury.jpg, A ''MESSENGER'' image of Mercury shows previously undetected fault scarps— cliff-like landforms resembling stairs that are small enough that scientists believe they are geologically young. This shows that Mercury is still contracting, and that Earth is not the only tectonically active Solar System planet.


Extended mission

In November 2011, NASA announced that the ''MESSENGER'' mission would be extended by one year, allowing the spacecraft to observe the 2012
solar maximum Solar maximum is the regular period of greatest solar activity during the Sun's 11-year solar cycle. During solar maximum, large numbers of sunspots appear, and the solar irradiance output grows by about 0.07%. On average, the solar cycle t ...
. Its extended mission began on March 17, 2012, and continued until March 17, 2013. Between April 16 and 20, 2012, ''MESSENGER'' carried out a series of thruster manoeuvres, placing it in an eight-hour orbit to conduct further scans of Mercury. In November 2012, NASA reported that ''MESSENGER'' had discovered both water ice and organic compounds in permanently shadowed craters in Mercury's north pole. In February 2013, NASA published the most detailed and accurate 3D map of Mercury to date, assembled from thousands of images taken by ''MESSENGER''. ''MESSENGER'' completed its first extended mission on March 17, 2013, and its second lasted until April 2015. In November 2013, ''MESSENGER'' was among the numerous space assets that imaged Comet Encke (2P/Encke) and Comet ISON (C/2012 S1). As its orbit began to decay in early 2015, ''MESSENGER'' was able to take highly detailed close-up photographs of ice-filled craters and other landforms at Mercury's north pole. After the mission was completed, review of the radio ranging data provided the first measurement of the rate of mass loss from the Sun. File:PIA19247-Mercury-NPolarRegion-Messenger20150316.jpg, False-color map showing maximum temperatures of north polar region. File:Crater Apollodor and Pantheon Fossae.jpg, Crater Apollodorus, with the Pantheon Fossae radiating from it. File:EW1026656707Gnomap.png, Crater rays streaking across the planet's southern hemisphere. File:Hollows in Sholem Aleichem.jpg, Hollows in the wall of crater Sholem Aleichem. File:PIA19450-PlanetMercury-CalorisBasin-20150501.jpg, Perspective view of Caloris Basin – high (red); low (blue).


Discovery of water, organic compounds and volcanism

On July 3, 2008, the ''MESSENGER'' team announced that the probe had discovered large amounts of water present in Mercury's exosphere, which was an unexpected finding. In the later years of its mission, ''MESSENGER'' also provided visual evidence of past volcanic activity on the surface of Mercury, as well as evidence for a liquid iron planetary core. The probe also constructed the most detailed and accurate maps of Mercury to date, and furthermore discovered carbon-containing
organic compound In chemistry, organic compounds are generally any chemical compounds that contain carbon- hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. Th ...
s and water ice inside permanently shadowed craters near the north pole. File:Gravity Anomalies on Mercury.jpg, Mass concentrations (red; Caloris Basin at center,
Sobkou Planitia Sobkou Planitia is a large basin on the planet Mercury. It is named after the ancient Egyptian messenger deity Sobkou (whose name is more usually transliterated Sobek). He was associated by the Egyptians with the planet Mercury. History Sobkou ...
at right), detected via gravity anomalies, provide evidence for subsurface structure and evolution. File:PIA19420-Mercury-NorthHem-Topography-MLA-Messenger-20150416.jpg, Northern hemisphere topography from MLA data shows a 10 km vertical range: high (red); low (purple). File:Unmasking the Secrets of Mercury.jpg, MASCS spectral scan of Mercury's surface. File:PIA19411-Mercury-WaterIce-Radar-MDIS-Messenger-20150416.jpg, Water ice (yellow) in permanently shaded craters of Mercury's north polar region


Solar System portrait

On February 18, 2011, a portrait of the Solar System was published on the ''MESSENGER'' website. The mosaic contained 34 images, acquired by the MDIS instrument during November 2010. All the planets were visible with the exception of
Uranus Uranus is the seventh planet from the Sun. Its name is a reference to the Greek god of the sky, Uranus (Caelus), who, according to Greek mythology, was the great-grandfather of Ares (Mars), grandfather of Zeus (Jupiter) and father of Cronu ...
and Neptune, due to their vast distances from the Sun. The ''MESSENGER'' "family portrait" was intended to be complementary to the Voyager family portrait, which was acquired from the outer Solar System by '' Voyager 1'' on February 14, 1990.


End of mission

After running out of propellant for course adjustments, ''MESSENGER'' entered its expected terminal phase of orbital decay in late 2014. The spacecraft's operation was extended by several weeks by exploiting its remaining supply of helium gas, which was used to pressurize its propellant tanks, as
reaction mass Working mass, also referred to as reaction mass, is a mass against which a system operates in order to produce acceleration. In the case of a chemical rocket, for example, the reaction mass is the product of the burned fuel shot backwards to pro ...
. ''MESSENGER'' continued studying Mercury during its decay period. The spacecraft crashed onto the surface of Mercury on April 30, 2015, at 3:26 p.m. EDT (19:26 GMT), at a velocity of , probably creating a crater in the planet's surface approximately wide. The spacecraft was estimated to have impacted at 54.4° N, 149.9° W on
Suisei Planitia Suisei Planitia is a large area of smooth plains on Mercury, approximately 570 km wide. Ghost craters are unusual forms that occur in the Suisei Planitia. They are buried and rounded in profile, with only their rim crests rising above the surroun ...
, near the crater Janáček. The crash occurred at a place not visible from Earth at the time, and thus was not detected by any observers or instruments. NASA confirmed the end of the ''MESSENGER'' mission at 3:40 p.m. EDT (19:40 GMT) after NASA's Deep Space Network did not detect the spacecraft's reemergence from behind Mercury.


See also

* '' BepiColombo'', a European-Japanese mission to Mercury which launched on October 19, 2018, and will enter orbit in December 2025 * Exploration of Mercury * Mariner program * Stamatios Krimigis, a NASA physicist and key contributor to the mission


References


External links


JHUAPL homepage
– official site at Johns Hopkins University Applied Physics Laboratory
MESSENGER Mission Page
– official information regarding the mission on the NASA website
MESSENGER Mission Profile
b
NASA's Solar System ExplorationMercury Flyby 1 Visualization Tool
an
Mercury Flyby 1 Actuals
– comparison between simulated views of Mercury to the images actually acquired by MESSENGER during flyby 1
Mercury Flyby 2 Visualization Tool
an
Mercury Flyby 2 Actuals
– comparison between simulated views of Mercury to the images actually acquired by MESSENGER during flyby 2
MESSENGER Image GalleryNSSDC Master Catalog entryVideo from MESSENGER as it departs EarthMercury data collected by both Mariner 10 and MESSENGERNASA Solar System 2015-04-27 MESSENGER at Mercury Images of the Mission
{{italic title Space probes launched in 2004 Destroyed space probes Discovery Program NASA space probes Missions to Mercury Spacecraft launched by Delta II rockets Orbiters (space probe) Articles containing video clips