HOME

TheInfoList



OR:

The liquid droplet radiator (LDR) or previously termed liquid droplet stream radiator is a proposed lightweight
radiator Radiators are heat exchangers used to transfer thermal energy from one medium to another for the purpose of cooling and heating. The majority of radiators are constructed to function in cars, buildings, and electronics. A radiator is always a ...
for the dissipation of
waste heat Waste heat is heat that is produced by a machine, or other process that uses energy, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the laws of thermodynamics. Waste heat has lower utility ...
generated by
power plants A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid. Many pow ...
,
propulsion Propulsion is the generation of force by any combination of pushing or pulling to modify the translational motion of an object, which is typically a rigid body (or an articulated rigid body) but may also concern a fluid. The term is derived from ...
or spacecraft systems in space.


Background

An advanced or future space mission must have a power source or propulsion that will require the rejection of waste heat. Disposing large quantities of waste heat must be considered in order to realize a large-space structure (LSS) that handle high power such as a
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nu ...
or a space solar power satellite (SPS). Such space systems require advanced high-temperature thermal control systems. Liquid metal heat pipes with conventional radiators are considered ideally suited for such applications. However, the required radiator surface area is huge, hence, the system mass is very large. The liquid droplet radiator (LDR) has an advantage in terms of the rejected heat power-weight ratio. The results of the studies indicate that for rejection temperatures below approximately 700 K, the LDR system is significantly lighter in weight than the other advanced radiator concepts. A LDR can be seven times lighter than conventional heat pipe radiators of similar size. The LDR is more resistant to meteorite impacts due to less critical surface or windage, and requires less storage volume. Therefore, the LDR has attracted attention as an advanced radiator for high-power space systems. In 1978, John M. Hedgepeth proposed, in "Ultralightweight Structures for Space Power," in Radiation Energy Conversion in Space, Vol. 61 of Progress in Astronautics and Aeronautics, K. W. Billman, ed. (AIAA, New York, 1978), p. 126, the use of a dust radiator to reduce the radiator weight of solar power satellites. Practical problems of this dust system led to the LDR concept in 1979. Numerous studies have been made by companies, organizations and universities around the world. Practical experiments were carried out for example with
STS-77 STS-77 was the 77th Space Shuttle mission and the 11th mission of the Space Shuttle Endeavour, Space Shuttle ''Endeavour''. The mission began from launch pad 39B from Kennedy Space Center, Florida on 19 May 1996 lasting 10 days and 40 minutes an ...
and at drop shafts in Japan: Japan Microgravity Center (JAMIC) and Microgravity Laboratory of Japan.


Concept

The liquid droplet radiator (LDR) system consists of a droplet generator, a collector, a
heat exchanger A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contac ...
, a recirculating pump, and a bellows-type pressure regulator ( accumulator). While undergoing a reduction in pressure the
saturated liquid Saturation, saturated, unsaturation or unsaturated may refer to: Chemistry * Saturation, a property of organic compounds referring to carbon-carbon bonds **Saturated and unsaturated compounds **Degree of unsaturation **Saturated fat or fatty acid ...
is sprayed into space as coherent streams of tiny, discrete droplets. The droplet stream can be a column or a sheet of liquid droplets moving through space from the droplet generator to the collector. The droplets carry the waste heat generated by a space power system and radiate this waste heat directly to space during their flight by transient
radiative heat transfer Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. Thermal radiation is generated when heat from the movement of charges in the material (electrons and protons in common forms of matter) is ...
. The liquid droplets are collected at a lower temperature, reheated, and pumped to the droplet generator and reused to continue to remove waste heat from the thermodynamic power cycle. The pressure at which liquid droplets are formed can vary widely in different applications, but it was found that once the droplet flow has been established, substantially lower pressures are needed to maintain the flow of droplet streams.


Heat transfer

Spacecraft waste heat is ultimately rejected to space by radiator surfaces. Radiators can be of different forms, such as spacecraft structural panels, flat-plate radiators mounted to the side of the spacecraft, panels deployed after the spacecraft is on orbit, and droplets. All radiators reject heat by
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
(IR) radiation from their surfaces. The radiating power depends on the surface's emittance and temperature. The radiator must reject both the spacecraft waste heat plus any radiant-heat loads from the environment or other spacecraft surfaces. Most radiators are therefore given surface finishes with high IR emittance ( > 0.8) to maximize heat rejection and low solar absorption ( < 0.2) to limit heat loads from the sun. High-temperature radiators are preferred for better efficiency and size reduction considerations, however, fluid property and droplet cloud property are additional factors. Droplet size formation and droplet density govern emission and
reabsorption In renal physiology, reabsorption or tubular reabsorption is the process by which the nephron removes water and solutes from the tubular fluid (pre-urine) and returns them to the circulating blood. It is called ''reabsorption'' (and not ''absorpt ...
. A smaller droplet is essential for obtaining effective radiation in the liquid droplet radiator. A droplet with a diameter of 1 μm has been calculated to cool from 500 K to 252 K in two seconds. A dense cloud of the droplet sheet will retard the cooling rate of the droplets because of the reabsorption of the emitted light. A single droplet radiates heat as it travels through space and at any time this heat loss is given by: \dot= (4 \pi a^2) \sigma F T^4 where \sigma is the
Stefan–Boltzmann constant The Stefan–Boltzmann constant (also Stefan's constant), a physical constant denoted by the Greek letter ''σ'' (sigma), is the constant of proportionality in the Stefan–Boltzmann law: "the total intensity radiated over all wavelengths inc ...
, \dot is the droplet heat loss rate to space (joules/second), a is the droplet radius (meters), F is the average gray body view factor for droplet at stream center (less than one), and T is the absolute droplet temperature at any time (
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and phys ...
). This equation models the droplet as a gray body with constant average emissivity. The instantaneous radiation rate is equal to the rate of energy loss resulting in this equation: (4 \pi a^2 ) \sigma F T^4 = - c \rho \frac \frac where c is the
specific heat capacity In thermodynamics, the specific heat capacity (symbol ) of a substance is the heat capacity of a sample of the substance divided by the mass of the sample, also sometimes referred to as massic heat capacity. Informally, it is the amount of heat t ...
, \rho is the density of droplet (kg/m3), t is the droplet transit time (seconds).


Limitations, challenges and solutions

The operating environment is not simply black space, but one with solar radiation and diffuse radiation reflected and emitted from the sun (stars), earth, other objects, and or the spacecraft's own propulsion. It is possible to "orient" the droplet sheet edge towards an external heat source but the sheet area would still be subject to radiation from other sources. Most of the presented solutions of the equation of radiative transfer are practical simplifications by introducing assumptions. In order to achieve high collection efficiency splashing of the droplet on the collector surface has to be minimized. It was determined that droplet collector with an incidence angle of 35 degrees can prevent a uniform droplet stream with droplet diameter 250 µm and a velocity of 16 m/s from splashing under
microgravity The term micro-g environment (also μg, often referred to by the term microgravity) is more or less synonymous with the terms ''weightlessness'' and ''zero-g'', but emphasising that g-forces are never exactly zero—just very small (on the I ...
condition. Another solution is to have a liquid film formed on the inner surface of the collector. When the droplet streams are absorbed in this liquid film, no splashes should be formed. A miscapture rate of incoming droplets was required to be less than 10−6. The droplet diameter was determined to be less than 300 µm and the droplet speed less than 20 m/s. If a
ferrofluid Ferrofluid is a liquid that is attracted to the poles of a magnet. It is a colloidal liquid made of nanoscale ferromagnetic or ferrimagnetic particles suspended in a carrier fluid (usually an organic solvent or water). Each magnetic particle ...
is used a magnetic focusing means can effectively suppress splashing. As the droplet sheet is in free fall a spacecraft performing a maneuver or angular acceleration would lose coolant. Even a magnetically focused LDR has a very limited tolerance of less than 10−3 g. A droplet generator has approximately 105 – 106 holes (orifices) per system with diameters of 50–20 µm. These orifices are more susceptible to damage than a conventional solid radiator or heat pipe which may affect droplet formation and droplet stream flow direction, potentially causing fluid loss.


Liquids

Liquids with low vapor pressures are preferred for the working fluids to minimize evaporation loss due to
flash evaporation Flash evaporation (or partial evaporation) is the partial vapor that occurs when a saturated liquid stream undergoes a reduction in pressure by passing through a throttling valve or other throttling device. This process is one of the simplest un ...
. Liquids have been found that in the range of 300 to 900 K have a vapor pressure so low that the evaporation loss during the normal lifetime of a space system (possibly as long as 30 years) will be only a small fraction of the total mass of the radiator. Operating life of the fluid in the LDR environment is affected by
thermal stability In thermodynamics, thermal stability describes the stability of a water body and its resistance to mixing.Schmidt, W. 1928. Über Temperatur und Stabilitätsverhältnisse von Seen. Geogr. Ann 10: 145 - 177. It is the amount of work needed to tr ...
,
oxidative stability Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a d ...
, and resistance to radiation. If a liquid metal is used as the coolant, the pumping of the liquid may use an electromagnetic device. The device induces eddy currents in the metal that generate a
Lorentz force In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an elect ...
with their associated magnetic fields. The effect is the pumping of the liquid metal resulting in a simplified design with no moving parts. This is known as MHD pumping. For example, a simple mixture of mineral oil and iron filings was found to approximate a suitable ferrofluid for several seconds, before separation of the iron filings and oil was observed in the presence of a magnetic field. At droplet sizes of approximately 200  µm, surface tension will hold the two components at accelerations up to about 1 g. If an ionic fluid is used as the coolant, the fluid can be used for momentum transfer between spacecraft traveling at different speeds. It may be possible to synthesize the fluid in-situ. For example, BMIM-BF4 ( [C8H15N2]+BF4) is 42.5%
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
by mass.
Lunar regolith Lunar soil is the fine fraction of the regolith found on the surface of the Moon. Its properties can differ significantly from those of terrestrial soil. The physical properties of lunar soil are primarily the result of mechanical disintegra ...
typically contains several compounds with carbon and about 5% of asteroids are carbonaceous
chondrite A chondrite is a stony (non-metallic) meteorite that has not been modified, by either melting or differentiation of the parent body. They are formed when various types of dust and small grains in the early Solar System accreted to form primi ...
s which are rich in carbon as well as metals and water. It may be possible to mine the moon for carbon and combine it with other elements to produce ionic fluid. Another good source of carbon is
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury (planet), Mercury. In the English language, Mars is named for the Mars (mythology), Roman god of war. Mars is a terr ...
' largest moon, Phobos, which is a captured asteroid believed to be rich in carbon.


LDR design configurations

There are two different droplet collection schemes: the centrifugal approach and the linear collection scheme. The linear collector is considered to be simpler, more reliable and lighter. Several different LDR configurations have been proposed and evaluated. *The ''spiral LDR'' employs a generator and collector which rotate at the same angular velocity. This concept was considered more complex due to unnecessary rotation of the collector. *The ''enclosed disc LDR'' contains a droplet generator at the center for creating a disc of droplets. Only the collector rotates. The entire radiator is enclosed by a transparent shroud, which minimizes spacecraft contamination resulting from any errant droplets. This concept was considered more complex due to unnecessary rotation of the collector. *The ''annular LDR'' utilizes a rotating collector to capture an annular sheet of droplets from an annular generator. The annular LDR has an inefficient radiative performance – the sheet radiates to itself more than the droplet sheets of alternate configurations. *Several proposed variations of the LDR utilize electric fields to control droplet trajectories as in the
ink jet printer Inkjet printing is a type of computer printing that recreates a digital image by propelling droplets of ink onto paper and plastic substrates. Inkjet printers were the most commonly used type of printer in 2008, and range from small inexpensi ...
. The Electrostatic THermal (Energy) Radiator (ETHER) is essentially a proposed variation of the LDR. The droplets are charged and in conjunction with a charge on the spacecraft that is opposite the droplet charge, the droplets will execute a slightly elliptical orbit. This closed trajectory would reduce overall system size. This concept calls for concerns about droplet-plasma interactions. Further, in low earth orbit the spacecraft will acquire its own
potential Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple re ...
. Rectangular and triangular versions of the LDR have been investigated the most. *The ''rectangular LDR'' employs a linear collector which is as wide as the droplet generator. The collector can be two sided, where two droplet sheets traveling in opposite directions impact a single collector. An alternate variation would utilize a one sided collector, with only one generator and droplet sheet. In a rectangular LDR, there is no focusing of the droplet sheet, and the droplet number density remains constant along the flight path. It is the simplest LDR design with the largest radiating area. *The ''triangular LDR'' concept employs a droplet generator to form a converging stream array (sheet) of droplets. The collector, located at the convergence point of the droplet sheet, employs a centrifugal force to capture the droplets. The triangular LDR is inherently less massive, because of the smaller collector. System studies have indicated that a triangular LDR can be 40 percent less massive than a rectangular LDR. However, for any comparable size the triangular LDR has half the area of a rectangular sheet and therefore rejects less heat. Currently, the use of pitot tube pickups has replaced the initial complex rotating seals. Collisions in a focused droplet sheet result in coalescence of the impacting droplets. The triangular LDR is now being developed more extensively. *The ''magnetically focused LDR'' employs a magnetic field to focus streams of droplets directed from the generator toward the collector, thereby assuring that essentially all of the droplets captured, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector. The magnetically focused LDR was investigated and patented by the
Brookhaven National Laboratory Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island, and was formally established in 1947 at the site of Camp Upton, a former U.S. Army base and Japanese internment c ...
(BNL) under a grant by the
Department of Energy A Ministry of Energy or Department of Energy is a government department in some countries that typically oversees the production of fuel and electricity; in the United States, however, it manages nuclear weapons development and conducts energy-rel ...
(Contract DE-AC02-76CH00016). The magnetic means can be achieved with a toroidal shaped electro-magnet or permanent magnets. As only one side of the droplet sheet would be focused by a single permanent magnet, an even number has to be placed across each other adjacent to the collector. A permanent dipole magnet has limited field strength, hence limits radiator size. Electromagnets or (cryogenic cooled) superconducting magnets offer higher field strengths, but may have mass tradeoff. A major conclusion drawn from calculations is that a spacecraft can be maneuvered at accelerations less than 10−3 g. Higher accelerations require numerous smaller LDRs which will be more massive in the sum, but would to be more likely to survive.


Monitoring and maintenance

System control and monitoring by means of artificial intelligence could enhance autonomous power system operation.


Further research

The LDR is being studied as a byproduct of a concept using a fluid stream for momentum transfer between an approaching spacecraft and another spacecraft, station or moon base. This method could reduce spacecraft mass while increasing space flight efficiency. A ''Liquid Sheet Radiator'' (LRS), adapted for planetary surfaces, is essentially a fountain enclosed in a transparent envelope. The liquid flows down on the inside of this envelope. The liquid sheet radiator concept is exceptionally stable and does not require special machining of the orifice to achieve its performance.


See also

*
Evaporative cooler An evaporative cooler (also known as evaporative air conditioner, swamp cooler, swamp box, desert cooler and wet air cooler) is a device that cools air through the evaporation of water. Evaporative cooling differs from other air conditioning s ...
*
Project Valkyrie The Valkyrie is a theoretical spacecraft designed by Charles Pellegrino and Jim Powell (a physicist at Brookhaven National Laboratory). The Valkyrie is theoretically able to accelerate to 92% the speed of light and decelerate afterward, carrying ...


References


Notes

{{reflist, group=N Cooling technology Space technology Spacecraft design Spacecraft components Spacecraft propulsion Nuclear power in space Temperature control Heat transfer Thermodynamics Engineering thermodynamics Heating, ventilation, and air conditioning Electromagnetic spectrum Electromagnetic radiation Radiation Infrared Infrared spectroscopy Fluid dynamics Fluid mechanics Scattering, absorption and radiative transfer (optics) Magnetohydrodynamics