In mathematics, linear interpolation is a method of
curve fitting using
linear polynomials to construct new data points within the range of a discrete set of known data points.
Linear interpolation between two known points
If the two known points are given by the coordinates
and the linear interpolant is the straight line between these points. For a value
in the interval the value
along the straight line is given from the equation of slopes
which can be derived geometrically from the figure on the right. It is a special case of
polynomial interpolation with
Solving this equation for
, which is the unknown value at
, gives
which is the formula for linear interpolation in the interval Outside this interval, the formula is identical to
linear extrapolation.
This formula can also be understood as a weighted average. The weights are inversely related to the distance from the end points to the unknown point; the closer point has more influence than the farther point. Thus, the weights are
and
, which are normalized distances between the unknown point and each of the end points. Because these sum to 1,
yielding the formula for linear interpolation given above.
Interpolation of a data set
Linear interpolation on a set of data points is defined as
piecewise linear, resulting from the concatenation of
linear segment interpolants between each pair of data points. This results in a
continuous curve, with a discontinuous derivative (in general), thus of
differentiability class
Linear interpolation as an approximation
Linear interpolation is often used to approximate a value of some
function using two known values of that function at other points. The ''error'' of this approximation is defined as
where denotes the linear interpolation
polynomial defined above:
It can be proven using
Rolle's theorem that if has a continuous second derivative, then the error is bounded by
That is, the approximation between two points on a given function gets worse with the second derivative of the function that is approximated. This is intuitively correct as well: the "curvier" the function is, the worse the approximations made with simple linear interpolation become.
History and applications
Linear interpolation has been used since antiquity for filling the gaps in tables. Suppose that one has a table listing the population of some country in 1970, 1980, 1990 and 2000, and that one wanted to estimate the population in 1994. Linear interpolation is an easy way to do this. It is believed that it was used in the
Seleucid Empire (last three centuries BC) and by the Greek astronomer and mathematician
Hipparchus
Hipparchus (; , ; BC) was a Ancient Greek astronomy, Greek astronomer, geographer, and mathematician. He is considered the founder of trigonometry, but is most famous for his incidental discovery of the precession of the equinoxes. Hippar ...
(second century BC). A description of linear interpolation can be found in the ancient
Chinese mathematical text called ''
The Nine Chapters on the Mathematical Art'' (),
dated from 200 BC to AD 100 and the ''
Almagest'' (2nd century AD) by
Ptolemy
Claudius Ptolemy (; , ; ; – 160s/170s AD) was a Greco-Roman mathematician, astronomer, astrologer, geographer, and music theorist who wrote about a dozen scientific treatises, three of which were important to later Byzantine science, Byzant ...
.
The basic operation of linear interpolation between two values is commonly used in
computer graphics
Computer graphics deals with generating images and art with the aid of computers. Computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. ...
. In that field's jargon it is sometimes called a lerp (from linear interpolation). The term can be used as a
verb
A verb is a word that generally conveys an action (''bring'', ''read'', ''walk'', ''run'', ''learn''), an occurrence (''happen'', ''become''), or a state of being (''be'', ''exist'', ''stand''). In the usual description of English, the basic f ...
or
noun
In grammar, a noun is a word that represents a concrete or abstract thing, like living creatures, places, actions, qualities, states of existence, and ideas. A noun may serve as an Object (grammar), object or Subject (grammar), subject within a p ...
for the operation. e.g. "
Bresenham's algorithm lerps incrementally between the two endpoints of the line."
Lerp operations are built into the hardware of all modern computer graphics processors. They are often used as building blocks for more complex operations: for example, a
bilinear interpolation can be accomplished in three lerps. Because this operation is cheap, it's also a good way to implement accurate
lookup tables with quick lookup for
smooth functions without having too many table entries.
Extensions
Accuracy
If a
function is insufficient, for example if the process that has produced the data points is known to be smoother than , it is common to replace linear interpolation with
spline interpolation or, in some cases,
polynomial interpolation.
Multivariate
Linear interpolation as described here is for data points in one spatial dimension. For two spatial dimensions, the extension of linear interpolation is called
bilinear interpolation, and in three dimensions,
trilinear interpolation. Notice, though, that these interpolants are no longer
linear functions of the spatial coordinates, rather products of linear functions; this is illustrated by the clearly non-linear example of
bilinear interpolation in the figure below. Other extensions of linear interpolation can be applied to other kinds of
mesh such as triangular and tetrahedral meshes, including
Bézier surfaces. These may be defined as indeed higher-dimensional
piecewise linear functions (see second figure below).
Programming language support
Many libraries and
shading languages have a "lerp" helper-function (in
GLSL known instead as mix), returning an interpolation between two inputs
(v0, v1)
for a parameter
t
in the closed unit interval
, 1 Signatures between lerp functions are variously implemented in both the forms
(v0, v1, t)
and
(t, v0, v1)
.
// Imprecise method, which does not guarantee v = v1 when t = 1, due to floating-point arithmetic error.
// This method is monotonic. This form may be used when the hardware has a native fused multiply-add instruction.
float lerp(float v0, float v1, float t)
// Precise method, which guarantees v = v1 when t = 1. This method is monotonic only when v0 * v1 < 0.
// Lerping between same values might not produce the same value
float lerp(float v0, float v1, float t)
This lerp function is commonly used for
alpha blending (the parameter "" is the "alpha value"), and the formula may be extended to blend multiple components of a vector (such as spatial ''x'', ''y'', ''z'' axes or ''r'', ''g'', ''b'' colour components) in parallel.
See also
*
Bilinear interpolation
*
Spline interpolation
*
Polynomial interpolation
*
de Casteljau's algorithm
*
First-order hold
*
Bézier curve
References
* .
External links
Equations of the Straight Lineat
cut-the-knot
Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet Union, Soviet-born Israeli Americans, Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow ...
Well-behaved interpolation for numbers and pointers*
*
Lerp smoothing is broken - a journey of decay and delta time
{{DEFAULTSORT:Linear Interpolation
Interpolation
de:Interpolation (Mathematik)#Lineare Interpolation