HOME

TheInfoList



OR:

A joule thief is a minimalist self-oscillating voltage booster that is small, low-cost, and easy to build, typically used for driving small loads. This circuit is also known by other names such as ''blocking oscillator'', ''joule ringer'', or ''vampire torch''. It can use nearly all of the energy in a single-cell electric battery, even far below the voltage where other circuits consider the battery fully discharged (or "dead"); hence the name, which suggests the notion that the circuit is ''stealing'' energy or "
joule The joule ( , ; symbol: J) is the unit of energy in the International System of Units (SI). It is equal to the amount of work done when a force of 1 newton displaces a mass through a distance of 1 metre in the direction of the force applie ...
s" from the source – the term is a
pun A pun, also known as paronomasia, is a form of word play that exploits multiple meanings of a term, or of similar-sounding words, for an intended humorous or rhetorical effect. These ambiguities can arise from the intentional use of homophoni ...
on "jewel thief". The circuit is a variant of the blocking oscillator that forms an unregulated voltage boost converter. The output voltage is increased at the expense of higher current draw on the input, but the integrated (average) current of the output is lowered and brightness of a luminescence decreased.


History


Prior art

The joule thief is not a new concept. Basically, it adds an LED to the output of a self-oscillating voltage booster, which was patented many decades ago. * US
Patent A patent is a type of intellectual property that gives its owner the legal right to exclude others from making, using, or selling an invention for a limited period of time in exchange for publishing an enabling disclosure of the invention."A ...
1949383, filed in 1930, "''Electronic device''", describes a
vacuum tube A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied. The type known as ...
based oscillator circuit to convert a low voltage into a high voltage. * US Patent 2211852, filed in 1937, "''Blocking oscillator apparatus''", describes a vacuum tube based blocking oscillator. * US Patent 2745012, filed in 1951, "''Transistor blocking oscillators''", describes three versions of a transistor based blocking oscillator. * US Patent 2780767, filed in 1955, "''Circuit arrangement for converting a low voltage into a high direct voltage''". * US Patent 2881380, filed in 1956, "''Voltage converter''". * US Patent 4734658, filed in 1987, "''Low voltage driven oscillator circuit''", describes a very low voltage driven oscillator circuit, capable of operating from as little as 0.1 volts (lower voltage than a joule thief will operate). This is achieved by using a
JFET The junction-gate field-effect transistor (JFET) is one of the simplest types of field-effect transistor. JFETs are three-terminal semiconductor devices that can be used as electronically controlled switches or resistors, or to build amplifier ...
, which does not require the forward biasing of a PN junction for its operation, because it is used in the
depletion mode In field-effect transistors (FETs), depletion mode and enhancement mode are two major transistor types, corresponding to whether the transistor is in an on state or an off state at zero gate–source voltage. Enhancement-mode MOSFETs (metal–o ...
. In other words, the drain–source already conducts, even when ''no'' bias voltage is applied. This patent was intended for use with
thermoelectric power source A thermoelectric generator (TEG), also called a Seebeck generator, is a solid state device that converts heat flux (temperature differences) directly into electrical energy through a phenomenon called the ''Seebeck effect'' (a form of thermoele ...
s.


Kaparnik

In November 1999 issue of ''
Everyday Practical Electronics ''Practical Electronics'' (previously known as ''Everyday Practical Electronics'') is a UK-published magazine that is available in print or downloadable format. Publication history ''Practical Electronics'' was founded in 1964 by IPC Magazines ...
'' (''EPE'') magazine, the "Ingenuity Unlimited" (reader ideas) section had a novel circuit idea entitled ''"One Volt LED - A Bright Light"'' by from Swindon, Wiltshire, UK. Three example circuits were shown for operating LEDs from supply voltages below 1.5 Volts. The basic circuits consisted of a transformer-feedback NPN transistor voltage converter based on the blocking oscillator. After testing three transistors (ZTX450 at 73% efficiency, ZTX650 at 79%, and BC550 at 57%), it was determined that a transistor with lower Vce(sat) yielded better efficiency results. Also, a resistor with lower resistance would yield a high current.


Description of operation

The circuit works by rapidly switching the transistor. Initially, current begins to flow through the resistor, secondary winding, and base-emitter junction (see diagram) which causes the transistor to begin conducting collector current through the primary winding. Since the two windings are connected in opposing directions, this induces a voltage in the secondary winding which is positive (due to the winding polarity, see
dot convention In electrical engineering, dot marking convention, or alphanumeric marking convention, or both, can be used to denote the same relative instantaneous polarity of two mutually inductive components such as between transformer windings. These ...
) which turns the transistor on with higher bias. This self-stroking/positive-feedback process almost instantly turns the transistor on as hard as possible (putting it in the saturation region), making the collector-emitter path look like essentially a closed switch (since VCE will be only about 0.1 volts, assuming that the base current is high enough). With the primary winding effectively across the battery, the current increases at a rate proportional to the supply voltage divided by the inductance. Transistor switch-off takes place by different mechanisms dependent upon supply voltage. The gain of a transistor is not linear with VCE. At low supply voltages (typically 0.75 V and below) the transistor requires a larger base current to maintain saturation as the collector current increases. Hence, when it reaches a critical collector current, the base drive available becomes insufficient and the transistor starts to pinch off and the previously described positive feedback action occurs turning it hard off. To summarize, once the current in the coils stops increasing for any reason, the transistor goes into the cutoff region (and opens the collector-emitter "switch"). The magnetic field collapses, inducing however much voltage is necessary to make the load conduct, or for the secondary-winding current to find some other path. When the field is back to zero, the whole sequence repeats; with the battery ramping-up the primary-winding current until the transistor switches on. If the load on the circuit is very small the rate of rise and ultimate voltage at the collector is limited only by stray
capacitance Capacitance is the capability of a material object or device to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized ar ...
s, and may rise to more than 100 times the supply voltage. For this reason, it is imperative that a load is always connected so that the transistor is not damaged. Because VCE is mirrored back to the secondary, failure of the transistor due to a small load will occur through the reverse VBE limit for the transistor being exceeded (this occurs at a much lower value than VCEmax). The transistor dissipates very little energy, even at high oscillating frequencies, because it spends most of its time in the fully on or fully off state, so either voltage over or current through the transistor is zero, thus minimizing the .


Simple voltage limiter

A simple modification of the previous schematic replaces the LED with three components to create a simple zener diode based voltage regulator. Diode D1 acts as a half-wave rectifier to allow capacitor C to charge up only when a higher voltage is available from the joule thief on the left side of diode D1. The
Zener diode A Zener diode is a special type of diode designed to reliably allow current to flow "backwards" (inverted polarity) when a certain set reverse voltage, known as the ''Zener voltage'', is reached. Zener diodes are manufactured with a great var ...
D2 limits the output voltage. As there is no regulation, any excess of energy not consumed by the load, will be dissipated as heat in the zener diode with consequent low efficiency of conversion. A better solution is shown in the next schematic example.


Closed-loop regulated joule thief

When a more constant output voltage is desired, the joule thief can be given a closed-loop control. In the example circuit, the
Schottky diode The Schottky diode (named after the German physicist Walter H. Schottky), also known as Schottky barrier diode or hot-carrier diode, is a semiconductor diode formed by the junction of a semiconductor with a metal. It has a low forward voltag ...
D1 blocks the charge built up on capacitor C1 from flowing back to the switching transistor Q1 when it is turned on. A 5.6 Volt
Zener diode A Zener diode is a special type of diode designed to reliably allow current to flow "backwards" (inverted polarity) when a certain set reverse voltage, known as the ''Zener voltage'', is reached. Zener diodes are manufactured with a great var ...
D2 and transistor Q2 forms the feedback control: when the voltage across the capacitor C1 is higher than the threshold voltage formed by Zener voltage of D2 plus the base-emitter turn-on voltage of transistor Q2, transistor Q2 is turned on diverting the base current of the switching transistor Q1, impeding the oscillation and prevents the voltage across capacitor C1 from rising even further. When the voltage across C1 drops below the threshold voltage Q2 turns off, allowing the oscillation to happen again. This very simple circuit has the drawback of temperature-dependent output voltage due to BJT2 (Vbe), and a relatively high ripple, but can be filtered with a simple LC pi network with low losses. In the example circuit, is included a low dropout regulator which contributes to regulating further the output voltage and lowers the ripple, but has the penalty of low conversion efficiency


See also

* Armstrong oscillator * Blocking oscillator *
Flyback converter The flyback converter is used in both AC/DC, and DC/DC conversion with galvanic isolation between the input and any outputs. The flyback converter is a buck-boost converter with the inductor split to form a transformer, so that the voltage ra ...
*
Forward converter Forward is a relative direction, the opposite of backward. Forward may also refer to: People *Forward (surname) Sports * Forward (association football) * Forward (basketball), including: ** Point forward ** Power forward (basketball) ** Smal ...
*
Switched-mode power supply A switched-mode power supply (switching-mode power supply, switch-mode power supply, switched power supply, SMPS, or switcher) is an electronic power supply that incorporates a switching regulator to convert electrical power efficiently. Like ...


References


External links

;Simulations and implementations
Joule Thief Simulation


* ttp://rustybolt.info/wordpress/?p=221 Supercharged Joule Thief at Higher Efficiency
Larger Schematic

Joule Thief - Modified Version
;Video
Clive Mitchell on making his Joule thief

Video make joule thief
{{in lang, fr Electric power conversion Electronic oscillators Power electronics Power supplies