Intrinsic Noise
   HOME

TheInfoList



OR:

Cellular noise is random variability in quantities arising in
cellular biology Cell biology (also cellular biology or cytology) is a branch of biology that studies the structure, function, and behavior of cells. All living organisms are made of cells. A cell is the basic unit of life that is responsible for the living and ...
. For example, cells which are genetically identical, even within the same tissue, are often observed to have different expression levels of proteins, different sizes and structures. These apparently random differences can have important biological and medical consequences. Cellular noise was originally, and is still often, examined in the context of gene expression levels – either the concentration or copy number of the products of genes within and between cells. As
gene expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. The ...
levels are responsible for many fundamental properties in cellular biology, including cells' physical appearance, behaviour in response to stimuli, and ability to process information and control internal processes, the presence of noise in gene expression has profound implications for many processes in cellular biology.


Definitions

The most frequent quantitative definition of noise is the
coefficient of variation In probability theory and statistics, the coefficient of variation (CV), also known as relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution. It is often expressed as ...
: : \eta_X = \frac, where \eta_X is the noise in a quantity X, \mu_X is the
mean There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value (magnitude and sign) of a given data set. For a data set, the ''arithme ...
value of X and \sigma_X is the
standard deviation In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while ...
of X. This measure is dimensionless, allowing a relative comparison of the importance of noise, without necessitating knowledge of the absolute mean. Other quantities often used for mathematical convenience are the
Fano factor In statistics, the Fano factor, like the coefficient of variation, is a measure of the dispersion of a probability distribution of a Fano noise. It is named after Ugo Fano, an Italian American physicist. The Fano factor is defined as :F=\frac, ...
: : F_X = \frac. and the normalized variance: : N_X = \eta_X^2 = \frac.


Experimental measurement

The first experimental account and analysis of gene expression noise in prokaryotes is from Becskei & Serrano and from
Alexander van Oudenaarden Alexander van Oudenaarden (19 March 1970) is a Dutch biophysicist and systems biologist. He is a leading researcher in stem cell biology, specialising in single cell techniques. In 2012 he started as director of the Hubrecht Institute and was a ...
's lab. The first experimental account and analysis of gene expression noise in eukaryotes is from
James J. Collins James Joseph Collins (born June 26, 1965) is an American biomedical engineer and bioengineer who serves as the Termeer Professor of Medical Engineering & Science at the Massachusetts Institute of Technology (MIT), where he is also a director at ...
's lab.


Intrinsic and extrinsic noise

Cellular noise is often investigated in the framework of ''intrinsic'' and ''extrinsic'' noise. Intrinsic noise refers to variation in identically-regulated quantities within a single cell: for example, the intra-cell variation in expression levels of two identically-controlled genes. Extrinsic noise refers to variation in identically-regulated quantities between different cells: for example, the cell-to-cell variation in expression of a given gene. Intrinsic and extrinsic noise levels are often compared in dual reporter studies, in which the expression levels of two identically-regulated genes (often fluorescent reporters like
GFP GFP may refer to: Organisations * Gaelic Football Provence, a French Gaelic Athletic Association club * Geheime Feldpolizei, the German secret military police during the Second World War * French Group for the Study of Polymers and their Applicat ...
and
YFP Yellow fluorescent protein (YFP) is a genetic mutant of green fluorescent protein (GFP) originally derived from the jellyfish ''Aequorea victoria''. Its excitation peak is 513 nm and its emission peak is 527 nm. Like the parent GFP, YFP ...
) are plotted for each cell in a population. An issue with the general depiction of extrinsic noise as a spread along the main diagonal in dual-reporter studies is the assumption that extrinsic factors cause positive expression correlations between the two reporters. In fact, when the two reporters compete for binding of a low-copy regulator, the two reporters become anomalously anticorrelated, and the spread is perpendicular to the main diagonal. In fact, any deviation of the dual-reporter scatter plot from circular symmetry indicates extrinsic noise. Information theory offers a way to avoid this anomaly.


Sources

''Note'': These lists are illustrative, not exhaustive, and identification of noise sources is an active and expanding area of research. ;Intrinsic noise * ''Low copy-number effects (including discrete birth and death events)'': the random (
stochastic Stochastic (, ) refers to the property of being well described by a random probability distribution. Although stochasticity and randomness are distinct in that the former refers to a modeling approach and the latter refers to phenomena themselv ...
) nature of production and degradation of cellular components means that noise is high for components at low copy number (as the magnitude of these random fluctuations is not negligible with respect to the copy number); * ''Diffusive cellular dynamics'': many important cellular processes rely on collisions between reactants (for example, RNA polymerase and DNA) and other physical criteria which, given the
diffusive Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of ...
dynamic nature of the cell, occur stochastically. * ''Noise propagation'': Low copy-number effects and diffusive dynamics result in each of the biochemical reactions in a cell occurring randomly. Stochasticity of reactions can be either attenuated or amplified. Contribution each reaction makes to the intrinsic variability in copy numbers can be quantified via Van Kampen's system size expansion. ;Extrinsic noise * ''Cellular age / cell cycle stage'': cells in a dividing population that is not synchronised will, at a given snapshot in time, be at different
cell cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and subs ...
stages, with corresponding biochemical and physical differences; *''Cell growth'': variations in growth rates leading to concentration variations between cells; * ''Physical environment (temperature, pressure, ...)'': physical quantities and chemical concentrations (particularly in the case of cell-to-cell signalling) may vary spatially across a population of cells, provoking extrinsic differences as a function of position; * ''Organelle distributions'': random factors in the quantity and quality of organelles (for example, the number and functionality of
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
) lead to significant cell-to-cell differences in a range of processes (as, for example, mitochondria play a central role in the energy budget of eukaryotic cells); * ''Inheritance noise'': uneven partitioning of cellular components between daughter cells at
mitosis In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
can result in large extrinsic differences in a dividing population. * ''Regulator competition'': Regulators competing to bind downstream promoters can cause negative correlations: when one promoter is bound the other is not and vice versa. Note that extrinsic noise can affect levels and types of intrinsic noise: for example, extrinsic differences in the mitochondrial content of cells lead, through differences in
ATP ATP may refer to: Companies and organizations * Association of Tennis Professionals, men's professional tennis governing body * American Technical Publishers, employee-owned publishing company * ', a Danish pension * Armenia Tree Project, non ...
levels, to some cells transcribing faster than others, affecting the rates of gene expression and the magnitude of intrinsic noise across the population.


Effects

''Note'': These lists are illustrative, not exhaustive, and identification of noise effects is an active and expanding area of research. * ''Gene expression levels'': noise in gene expression causes differences in the fundamental properties of cells, limits their ability to biochemically control cellular dynamics, and directly or indirectly induce many of the specific effects below; * ''Energy levels and transcription rate'': noise in transcription rate, arising from sources including
transcriptional bursting Transcriptional bursting, also known as transcriptional pulsing, is a fundamental property of genes in which transcription from DNA to RNA can occur in "bursts" or "pulses", which has been observed in diverse organisms, from bacteria to mammals. ...
, is a significant source of noise in expression levels of genes. Extrinsic noise in
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
l content has been suggested to propagate to differences in the ATP concentrations and transcription rates (with functional relationships implied between these three quantities) in cells, affecting cells' energetic competence and ability to express genes; * ''Phenotype selection'': bacterial populations exploit extrinsic noise to choose a population subset to enter a quiescent state. In a bacterial infection, for example, this subset will not propagate quickly but will be more robust when the population is threatened by antibiotic treatment: the rapidly replicating, infectious bacteria will be killed more quickly than the quiescent subset, which may be capable of restarting the infection. This phenomenon is why courses of antibiotics should be finished even when symptoms seem to have disappeared; * ''Development and stem cell differentiation'':
developmental noise Developmental noise is a concept within developmental biology in which the phenotype varies between individuals even though both the genotypes and the environmental factors are the same for all of them. Contributing factors include stochastic gene ...
in biochemical processes which need to be tightly controlled (for example, patterning of gene expression levels that develop into different body parts) during organismal development can have dramatic consequences, necessitating the evolution of robust cellular machinery. Stem cells differentiate into different cell types depending on the expression levels of various characteristic genes: noise in gene expression can clearly perturb and influence this process, and noise in transcription rate can affect the structure of the dynamic landscape that differentiation occurs on. There are review articles summarizing these effects from bacteria to mammalian cells; * ''Drug resistance'': Noise improves short-term survival and long-term evolution of drug resistance at high levels of drug treatment. Noise has the opposite effect at low levels of drug treatment; * ''Cancer treatments'': recent work has found extrinsic differences, linked to gene expression levels, in the response of cancer cells to anti-cancer treatments, potentially linking the phenomenon of fractional killing (whereby each treatment kills some but not all of a tumour) to noise in gene expression. Because individual cells could repeatedly and stochastically perform transitions between states associated with differences in responsiveness to a therapeutic modality (chemotherapy, targeted agent, radiation, etc.), therapy might need to be administered frequently (to ensure cells are treated soon after entering a therapy-responsive state, before they can rejoin the therapy-resistant subpopulation and proliferate) and over long times (to treat even those cells emerging late from the final residue of the therapy-resistant subpopulation). * ''Evolution of genome'': Genome are covered by chromatin that can be roughly classified into "open" (also known as euchromatin) or "closed" (also known as heterochromatin). Open chromatin leads to less noise in transcription compared to heterochromatin. Often "housekeeping" proteins (which are proteins that carry out tasks in the required for cellular survival) work large multiprotein complexes. If the noise in proteins of such complexes are to discoordinated, it can lead to reduced level of production of multiprotein complexes, with potentially deleterious effects. Reduction in noise may provide an evolutionary selection movement of essential genes into open chromatin. * ''Information processing'': as cellular regulation is performed with components that are themselves subject to noise, the ability of cells to process information and perform control is fundamentally limited by intrinsic noise


Analysis

As many quantities of cell biological interest are present in discrete copy number within the cell (single DNAs, dozens of mRNAs, hundreds of proteins), tools from discrete stochastic mathematics are often used to analyse and model cellular noise. In particular, master equation treatments – where the probabilities P(\mathbf,t) of observing a system in a state \mathbf at time t are linked through ODEs – have proved particularly fruitful. A canonical model for noise gene expression, where the processes of DNA activation,
transcription Transcription refers to the process of converting sounds (voice, music etc.) into letters or musical notes, or producing a copy of something in another medium, including: Genetics * Transcription (biology), the copying of DNA into RNA, the fir ...
and
translation Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The ...
are all represented as
Poisson processes In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one ...
with given rates, gives a master equation which may be solved exactly (with generating functions) under various assumptions or approximated with stochastic tools like Van Kampen's system size expansion. Numerically, the
Gillespie algorithm In probability theory, the Gillespie algorithm (or the Doob-Gillespie algorithm or ''Stochastic Simulation Algorithm'', the SSA) generates a statistically correct trajectory (possible solution) of a stochastic equation system for which the reaction ...
or stochastic simulation algorithm is often used to create realisations of stochastic cellular processes, from which statistics can be calculated. The problem of inferring the values of parameters in stochastic models ( parametric inference) for biological processes, which are typically characterised by sparse and noisy experimental data, is an active field of research, with methods including Bayesian MCMC and approximate Bayesian computation proving adaptable and robust. Regarding the two-state model, a moment-based method was described for parameters inference from mRNAs distributions.


References

{{Reflist, 30em, refs= {{cite journal , title=The chaos within: exploring noise in cellular biology , author=Johnston, I. G. , journal=Significance , volume=19 , issue=4 , pages=17–21 , year = 2012 , doi=10.1111/j.1740-9713.2012.00586.x , arxiv=1208.2250 , bibcode=2012arXiv1208.2250J , s2cid=16368991 {{cite journal , title=Stochastic gene expression in a single cell , author=Elowitz, M.B. , author2=Levine, A.J. , author3=Siggia, E.D. , author4=Swain, P.S. , journal=Science , volume=297 , issue=5584 , pages=1183–6 , year = 2002 , doi=10.1126/science.1070919 , pmid=12183631, bibcode=2002Sci...297.1183E , s2cid=10845628 {{cite journal , author= Athale, C.A. , author2= Chaudhari, H. , title=Population length variability and nucleoid numbers in Escherichia coli , journal=Bioinformatics , volume=27 , issue= 21 , pages=2944–2998 , year=2011 , doi=10.1093/bioinformatics/btr501 , pmid=21930671 {{cite journal , author=Morelli, M.J. , author2=Allen, R.J. , author3=ten Wolde, P.R. , name-list-style=amp , title=Effects of macromolecular crowding on genetic networks , journal=Biophys. J. , volume=101 , issue=12 , pages=2882–2891 , year=2011 , doi=10.1016/j.bpj.2011.10.053 , pmid=22208186 , pmc=3244068, bibcode=2011BpJ...101.2882M {{cite journal , vauthors=das Neves RP, Jones NS, Andreu L, Gupta R, Enver T, Iborra FJ , title=Connecting Variability in Global Transcription Rate to Mitochondrial Variability , journal=PLOS Biol. , year=2010 , volume=8 , issue=12 , pages=e1000560 , doi=10.1371/journal.pbio.1000560 , pmid=21179497 , pmc=3001896 {{ cite journal , vauthors=Johnston IG, Gaal B, das Neves RP, Enver T, Iborra FJ, Jones NS , title=Mitochondrial Variability as a Source of Extrinsic Cellular Noise , journal=PLOS Comput. Biol. , volume=8 , issue=3 , pages=e1002416 , year=2012 , doi=10.1371/journal.pcbi.1002416 , pmid=22412363 , pmc=3297557, bibcode=2012PLSCB...8E2416J , arxiv=1107.4499 {{cite journal , title=Random partitioning of molecules at cell division , author=Huh, D. , author2=Paulsson, J. , journal=Proc. Natl. Acad. Sci. USA , volume=108 , issue=36 , pages=15004–15009 , year=2011 , doi=10.1073/pnas.1013171108, pmid=21873252 , pmc=3169110 , bibcode=2011PNAS..10815004H , doi-access=free {{ cite journal , title=Fundamental limits on the suppression of molecular fluctuations , author=Lestas, I. , author2=Vinnicombe, G. , author3=Paulsson, J. , journal=Nature , volume=467 , issue=7312 , pages=174–8 , year=2010 , doi=10.1038/nature09333 , pmid=20829788 , pmc=2996232, bibcode=2010Natur.467..174L {{cite journal , title=A chance at survival: gene expression noise and phenotypic diversification strategies. , vauthors=Fraser D, Kaern M , journal=Mol. Microbiol. , volume=71 , issue=6 , pages=1333–1340 , year=2009 , doi=10.1111/j.1365-2958.2009.06605.x , pmid=19220745, doi-access=free {{cite journal , title=Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis , author=Spencer, S.L. , author2=Gaudet, S. , author3=Albeck, J.G. , author4=Burke, J.M. , author5=Sorger, P.K., journal=Nature , volume=459 , issue=7245 , pages=428–432 , year=2009 , doi=10.1038/nature08012 , pmid=19363473 , pmc=2858974 , bibcode=2009Natur.459..428S {{cite journal , title=Models of stochastic gene expression , author=Paulsson, J. , journal=Phys. Life Rev. , volume=2 , issue=2 , pages=157–175, year=2005 , doi=10.1016/j.plrev.2005.03.003, bibcode=2005PhLRv...2..157P {{cite journal , title=Stochastic modelling for quantitative description of heterogeneous biological systems , author=Wilkinson, D.J. , journal=Nat. Rev. Genet. , volume=10 , issue=2 , pages=122–133 , year=2009 , doi=10.1038/nrg2509 , pmid=19139763, s2cid=14731499 {{cite journal , title=Strategies for cellular decision-making , author=Perkins, T.J. , author2=Swain, P.S. , name-list-style=amp , journal=Mol. Syst. Biol. , volume=5 , issue = 236 , pages=326 , doi=10.1038/msb.2009.83 , pmid=19920811 , pmc=2795477 , year=2009 {{cite journal , title=Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise , vauthors = Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS , journal=Nature , volume=441 , issue = 7095 , pages=840–846 , year=2006 , doi = 10.1038/nature04785 , pmid=16699522, bibcode=2006Natur.441..840N , s2cid = 4300851 {{cite journal , title=Analytical distributions for stochastic gene expression , author = Shahrezaei, V. , author2 = Swain, P.S. , name-list-style = amp , journal = Proc. Natl. Acad. Sci. USA , volume = 105 , issue=45 , pages=17256–17261 , year=2008 , doi=10.1073/pnas.0803850105, pmid = 18988743 , pmc = 2582303 , arxiv=0812.3344 , bibcode=2008PNAS..10517256S , doi-access = free {{cite journal , title = Do Stem Cells Play Dice? , author = T. Enver , author2 = C.M. Heyworth , author3 = T.M. Dexter , name-list-style = amp , journal = Blood , volume= 92 , issue = 2 , year=1998 , pages = 348-51; discussion 352 , doi = 10.1182/blood.V92.2.348 , pmid = 9657728 {{cite journal , author =Kaern, M. , author2 =Elston, T.R. , author3 =Blake, W.J. , author4 =Collins, J.J. , name-list-style =amp , title=Stochasticity in gene expression: from theories to phenotypes , journal =Nat. Rev. Genet. , volume=6 , issue =6 , pages=451–464 , year=2005 , doi=10.1038/nrg1615 , pmid =15883588 , s2cid =1028111 {{cite journal , journal=Annu. Rev. Biophys. Biomol. Struct. , year=2007 , volume=36 , pages=413–434 , title=Living with noisy genes: how cells function reliably with inherent variability in gene expression , vauthors=Maheshri N, O'Shea EK , doi=10.1146/annurev.biophys.36.040306.132705 , pmid=17477840 {{cite journal , journal=Phys. Biol. , year=2012, volume=9 , issue=6, page=065005 , title=Conceptualizing a tool to optimize therapy based on dynamic heterogeneity , vauthors=Liao D, Estévez-Salmerón L, Tlsty TD , doi=10.1088/1478-3975/9/6/065005 , pmid=23197078, pmc=3618714, bibcode=2012PhBio...9f5005L {{cite journal , journal=Biophys. J. , year=2013, volume=104 , issue=8, pages=1783–1793 , title=Decomposing Noise in Biochemical Signaling Systems Highlights the Role of Protein Degradation , vauthors=Komorowski M, Miekisz J, Stumpf M PH, doi=10.1016/j.bpj.2013.02.027 , pmid=23601325 , pmc=3627874, bibcode=2013BpJ...104.1783K {{cite journal, last1=Peccoud, first1=J., last2=Ycart, first2=B., title=Markovian Modelling of Gene Product Synthesis., journal=Theoretical Population Biology, date=1995, volume=48, issue=2, pages=222–234 , name-list-style=amp , doi= 10.1006/tpbi.1995.1027 {{cite journal , journal=Nature Genetics , volume=39 , issue=8 , year=2007 , doi=10.1038/ng2071 , title=Evolution of chromosome organization driven by selection for reduced gene expression noise. , vauthors=Batada NN, Hurst LD , pages=945–9 , pmid= 17660811, s2cid=19546863 {{cite journal , journal=Bioinformatics , year=2013, doi=10.1093/bioinformatics/btt631 , title=StochDecomp - Matlab package for noise decomposition in stochastic biochemical systems , vauthors=Jetka T, Charzynska A, Gambin A, Stumpf M PH, Komorowski M , volume=30 , issue=1, pages=137–138 , pmid=24191070, arxiv=1308.3103 , bibcode=2013arXiv1308.3103J Cell biology Biophysics Molecular biology Biostatistics Randomness