HOME

TheInfoList



OR:

This is a glossary of some terms used in
Riemannian geometry Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to poin ...
and
metric geometry In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general settin ...
— it doesn't cover the terminology of
differential topology In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which ...
. The following articles may also be useful; they either contain specialised vocabulary or provide more detailed expositions of the definitions given below. * Connection *
Curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonic ...
* Metric space *
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ...
See also: * Glossary of general topology * Glossary of differential geometry and topology * List of differential geometry topics Unless stated otherwise, letters ''X'', ''Y'', ''Z'' below denote metric spaces, ''M'', ''N'' denote Riemannian manifolds, , ''xy'', or , xy, _X denotes the distance between points ''x'' and ''y'' in ''X''. Italic ''word'' denotes a self-reference to this glossary. ''A caveat'': many terms in Riemannian and metric geometry, such as ''convex function'', ''convex set'' and others, do not have exactly the same meaning as in general mathematical usage. __NOTOC__


A

Alexandrov space a generalization of Riemannian manifolds with upper, lower or integral curvature bounds (the last one works only in dimension 2) Almost flat manifold Arc-wise isometry the same as ''path isometry''. Autoparallel the same as ''totally geodesic''


B

Barycenter, see ''center of mass''. bi-Lipschitz map. A map f:X\to Y is called bi-Lipschitz if there are positive constants ''c'' and ''C'' such that for any ''x'' and ''y'' in ''X'' :c, xy, _X\le, f(x)f(y), _Y\le C, xy, _X
Busemann function In geometric topology, Busemann functions are used to study the large-scale geometry of geodesics in Hadamard spaces and in particular Hadamard manifolds (simply connected complete Riemannian manifolds of nonpositive curvature). They are named aft ...
given a ''
ray Ray may refer to: Fish * Ray (fish), any cartilaginous fish of the superorder Batoidea * Ray (fish fin anatomy), a bony or horny spine on a fin Science and mathematics * Ray (geometry), half of a line proceeding from an initial point * Ray (g ...
'', γ : \gamma(t)-p, -t)


C

Cartan–Hadamard theorem">Conjugation
--> Cartan–Hadamard theorem is the statement that a connected, simply connected complete Riemannian manifold with non-positive sectional curvature is diffeomorphic to Rn via the exponential map; for metric spaces, the statement that a connected, simply connected complete geodesic metric space with non-positive curvature in the sense of Alexandrov is a (globally) CAT(0) space. Élie Cartan, Cartan extended Einstein's General relativity to Einstein–Cartan theory, using Riemannian-Cartan geometry instead of Riemannian geometry. This extension provides affine torsion, which allows for non-symmetric curvature tensors and the incorporation of spin–orbit coupling. Center of mass. A point ''q'' ∈ ''M'' is called the center of mass of the points p_1,p_2,\dots,p_k if it is a point of global minimum of the function :f(x)=\sum_i , p_ix, ^2 Such a point is unique if all distances , p_ip_j, are less than ''radius of convexity''. Christoffel symbol
Collapsing manifold In Riemannian geometry, a collapsing or collapsed manifold is an ''n''-dimensional manifold ''M'' that admits a sequence of Riemannian metrics ''g'i'', such that as ''i'' goes to infinity the manifold is close to a ''k''-dimensional space, w ...
Complete space Completion
Conformal map In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths. More formally, let U and V be open subsets of \mathbb^n. A function f:U\to V is called conformal (or angle-preserving) at a point u_0\in ...
is a map which preserves angles. Conformally flat a manifold ''M'' is conformally flat if it is locally conformally equivalent to a Euclidean space, for example standard sphere is conformally flat. Conjugate points two points ''p'' and ''q'' on a geodesic \gamma are called conjugate if there is a Jacobi field on \gamma which has a zero at ''p'' and ''q''.
Convex function In mathematics, a real-valued function is called convex if the line segment between any two points on the graph of a function, graph of the function lies above the graph between the two points. Equivalently, a function is convex if its epigra ...
. A function ''f'' on a Riemannian manifold is a convex if for any geodesic \gamma the function f\circ\gamma is convex. A function ''f'' is called \lambda-convex if for any geodesic \gamma with natural parameter t, the function f\circ\gamma(t)-\lambda t^2 is convex. Convex A subset ''K'' of a Riemannian manifold ''M'' is called convex if for any two points in ''K'' there is a ''shortest path'' connecting them which lies entirely in ''K'', see also ''totally convex''.
Cotangent bundle In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This may ...
Covariant derivative In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a different ...
Cut locus


D

Diameter of a metric space is the supremum of distances between pairs of points. Developable surface is a surface
isometric The term ''isometric'' comes from the Greek for "having equal measurement". isometric may mean: * Cubic crystal system, also called isometric crystal system * Isometre, a rhythmic technique in music. * "Isometric (Intro)", a song by Madeon from ...
to the plane. Dilation of a map between metric spaces is the infimum of numbers ''L'' such that the given map is ''L''-
Lipschitz Lipschitz, Lipshitz, or Lipchitz, is an Ashkenazi Jewish (Yiddish/German-Jewish) surname. The surname has many variants, including: Lifshitz (Lifschitz), Lifshits, Lifshuts, Lefschetz; Lipschitz, Lipshitz, Lipshits, Lopshits, Lipschutz (Lipschütz ...
.


E

Exponential map:
Exponential map (Lie theory) In the theory of Lie groups, the exponential map is a map from the Lie algebra \mathfrak g of a Lie group G to the group, which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of ...
, Exponential map (Riemannian geometry)


F

Finsler metric First fundamental form for an embedding or immersion is the pullback of the
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
.


G

Geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
is a
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight. Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
which locally minimizes distance. Geodesic flow is a
flow Flow may refer to: Science and technology * Fluid flow, the motion of a gas or liquid * Flow (geomorphology), a type of mass wasting or slope movement in geomorphology * Flow (mathematics), a group action of the real numbers on a set * Flow (psych ...
on a tangent bundle ''TM'' of a manifold ''M'', generated by a vector field whose trajectories are of the form (\gamma(t),\gamma'(t)) where \gamma is a
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
. Gromov-Hausdorff convergence Geodesic metric space is a metric space where any two points are the endpoints of a minimizing
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
.


H

Hadamard space is a complete simply connected space with nonpositive curvature. Horosphere a level set of ''Busemann function''.


I

Injectivity radius The injectivity radius at a point ''p'' of a Riemannian manifold is the largest radius for which the exponential map at ''p'' is a diffeomorphism. The injectivity radius of a Riemannian manifold is the infimum of the injectivity radii at all points. See also cut locus. For complete manifolds, if the injectivity radius at ''p'' is a finite number ''r'', then either there is a geodesic of length 2''r'' which starts and ends at ''p'' or there is a point ''q'' conjugate to ''p'' (see conjugate point above) and on the distance ''r'' from ''p''. For a
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
Riemannian manifold the injectivity radius is either half the minimal length of a closed geodesic or the minimal distance between conjugate points on a geodesic. Infranilmanifold Given a simply connected nilpotent Lie group ''N'' acting on itself by left multiplication and a finite group of automorphisms ''F'' of ''N'' one can define an action of the
semidirect product In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product: * an ''inner'' semidirect product is a particular way in w ...
N \rtimes F on ''N''. An orbit space of ''N'' by a discrete subgroup of N \rtimes F which acts freely on ''N'' is called an ''infranilmanifold''. An infranilmanifold is finitely covered by a nilmanifold. Isometry is a map which preserves distances. Intrinsic metric


J

Jacobi field A Jacobi field is a vector field on a
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
γ which can be obtained on the following way: Take a smooth one parameter family of geodesics \gamma_\tau with \gamma_0=\gamma, then the Jacobi field is described by :J(t)=\left. \frac \_. Jordan curve


K

Killing vector field In mathematics, a Killing vector field (often called a Killing field), named after Wilhelm Killing, is a vector field on a Riemannian manifold (or pseudo-Riemannian manifold) that preserves the metric. Killing fields are the infinitesimal gene ...


L

Length metric the same as ''intrinsic metric''.
Levi-Civita connection In Riemannian or pseudo Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold (i.e. affine connection) that preserves th ...
is a natural way to differentiate vector fields on Riemannian manifolds. Lipschitz convergence the convergence defined by Lipschitz metric. Lipschitz distance between metric spaces is the infimum of numbers ''r'' such that there is a bijective ''bi-Lipschitz'' map between these spaces with constants exp(-''r''), exp(''r''). Lipschitz map Logarithmic map is a right inverse of Exponential map.


M

Mean curvature Metric ball
Metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
Minimal surface is a submanifold with (vector of) mean curvature zero.


N

Natural parametrization is the parametrization by length. Net. A subset ''S'' of a metric space ''X'' is called \epsilon-net if for any point in ''X'' there is a point in ''S'' on the distance \le\epsilon. This is distinct from topological nets which generalize limits. Nilmanifold: An element of the minimal set of manifolds which includes a point, and has the following property: any oriented S^1-bundle over a nilmanifold is a nilmanifold. It also can be defined as a factor of a connected nilpotent
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
by a lattice. Normal bundle: associated to an imbedding of a manifold ''M'' into an ambient Euclidean space ^N, the normal bundle is a vector bundle whose fiber at each point ''p'' is the orthogonal complement (in ^N) of the tangent space T_pM. Nonexpanding map same as ''short map''


P

Parallel transport Polyhedral space a
simplicial complex In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their ''n''-dimensional counterparts (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial set ...
with a metric such that each simplex with induced metric is isometric to a simplex in Euclidean space. Principal curvature is the maximum and minimum normal curvatures at a point on a surface. Principal direction is the direction of the principal curvatures. Path isometry Proper metric space is a metric space in which every closed ball is compact. Equivalently, if every closed bounded subset is compact. Every proper metric space is
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
.


Q

Quasigeodesic has two meanings; here we give the most common. A map f: I \to Y (where I\subseteq \mathbb R is a subsegment) is called a ''quasigeodesic'' if there are constants K \ge 1 and C \ge 0 such that for every x,y\in I :d(x,y)-C\le d(f(x),f(y))\le Kd(x,y)+C. Note that a quasigeodesic is not necessarily a continuous curve. Quasi-isometry. A map f:X\to Y is called a ''quasi-isometry'' if there are constants K \ge 1 and C \ge 0 such that :d(x,y)-C\le d(f(x),f(y))\le Kd(x,y)+C. and every point in ''Y'' has distance at most ''C'' from some point of ''f''(''X''). Note that a quasi-isometry is not assumed to be continuous. For example, any map between compact metric spaces is a quasi isometry. If there exists a quasi-isometry from X to Y, then X and Y are said to be quasi-isometric.


R

Radius of metric space is the infimum of radii of metric balls which contain the space completely. Radius of convexity at a point ''p'' of a Riemannian manifold is the largest radius of a ball which is a ''convex'' subset. Ray is a one side infinite geodesic which is minimizing on each interval Riemann curvature tensor
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ...
Riemannian submersion is a map between Riemannian manifolds which is submersion and ''submetry'' at the same time.


S

Second fundamental form is a quadratic form on the tangent space of hypersurface, usually denoted by II, an equivalent way to describe the ''shape operator'' of a hypersurface, :\text(v,w)=\langle S(v),w\rangle It can be also generalized to arbitrary codimension, in which case it is a quadratic form with values in the normal space. Shape operator for a hypersurface ''M'' is a linear operator on tangent spaces, ''S''''p'': ''T''''p''''M''→''T''''p''''M''. If ''n'' is a unit normal field to ''M'' and ''v'' is a tangent vector then :S(v)=\pm \nabla_n (there is no standard agreement whether to use + or − in the definition). Short map is a distance non increasing map. Smooth manifold
Sol manifold In mathematics, a solvmanifold is a homogeneous space of a connected (topology), connected solvable Lie group. It may also be characterized as a quotient of a connected solvable Lie group by a closed (topology), closed subgroup. (Some authors also r ...
is a factor of a connected solvable Lie group by a lattice.
Submetry This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology. The following articles may also be useful; they either contain specialised vocabulary or provid ...
a short map ''f'' between metric spaces is called a submetry if there exists ''R > 0'' such that for any point ''x'' and radius ''r < R'' we have that image of metric ''r''-ball is an ''r''-ball, i.e. :f(B_r(x))=B_r(f(x))
Sub-Riemannian manifold In mathematics, a sub-Riemannian manifold is a certain type of generalization of a Riemannian manifold. Roughly speaking, to measure distances in a sub-Riemannian manifold, you are allowed to go only along curves tangent to so-called ''horizontal ...
Systole Systole ( ) is the part of the cardiac cycle during which some chambers of the heart contract after refilling with blood. The term originates, via New Latin, from Ancient Greek (''sustolē''), from (''sustéllein'' 'to contract'; from ''sun ...
. The ''k''-systole of ''M'', syst_k(M), is the minimal volume of ''k''-cycle nonhomologous to zero.


T

Tangent bundle Totally convex. A subset ''K'' of a Riemannian manifold ''M'' is called totally convex if for any two points in ''K'' any geodesic connecting them lies entirely in ''K'', see also ''convex''. Totally geodesic submanifold is a ''submanifold'' such that all ''
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
s'' in the submanifold are also geodesics of the surrounding manifold.


U

Uniquely geodesic metric space is a metric space where any two points are the endpoints of a unique minimizing
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
.


W

Word metric on a group is a metric of the Cayley graph constructed using a set of generators. {{DEFAULTSORT:Glossary Of Riemannian And Metric Geometry Differential geometry Geometry * *