Infinite General Linear Group
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the general linear group of degree ''n'' is the set of
invertible matrices In linear algebra, an -by- square matrix is called invertible (also nonsingular or nondegenerate), if there exists an -by- square matrix such that :\mathbf = \mathbf = \mathbf_n \ where denotes the -by- identity matrix and the multiplicati ...
, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with identity matrix as the identity element of the group. The group is so named because the columns (and also the rows) of an invertible matrix are linearly independent, hence the vectors/points they define are in
general linear position In algebraic geometry and computational geometry, general position is a notion of genericity for a set of points, or other geometric objects. It means the ''general case'' situation, as opposed to some more special or coincidental cases that are ...
, and matrices in the general linear group take points in general linear position to points in general linear position. To be more precise, it is necessary to specify what kind of objects may appear in the entries of the matrix. For example, the general linear group over R (the set of
real numbers In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
) is the group of invertible matrices of real numbers, and is denoted by GL''n''(R) or . More generally, the general linear group of degree ''n'' over any
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
''F'' (such as the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s), or a
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
''R'' (such as the ring of
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s), is the set of invertible matrices with entries from ''F'' (or ''R''), again with matrix multiplication as the group operation.Here rings are assumed to be associative and unital. Typical notation is GL''n''(''F'') or , or simply GL(''n'') if the field is understood. More generally still, the general linear group of a vector space GL(''V'') is the abstract automorphism group, not necessarily written as matrices. The special linear group, written or SL''n''(''F''), is the subgroup of consisting of matrices with a
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and ...
of 1. The group and its subgroups are often called linear groups or matrix groups (the abstract group GL(''V'') is a linear group but not a matrix group). These groups are important in the theory of
group representation In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to re ...
s, and also arise in the study of spatial
symmetries Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
and symmetries of
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
s in general, as well as the study of
polynomials In mathematics, a polynomial is an expression (mathematics), expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtrac ...
. The
modular group In mathematics, the modular group is the projective special linear group of matrices with integer coefficients and determinant 1. The matrices and are identified. The modular group acts on the upper-half of the complex plane by fractional l ...
may be realised as a quotient of the special linear group . If , then the group is not
abelian Abelian may refer to: Mathematics Group theory * Abelian group, a group in which the binary operation is commutative ** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms * Metabelian group, a grou ...
.


General linear group of a vector space

If ''V'' is a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
over the field ''F'', the general linear group of ''V'', written GL(''V'') or Aut(''V''), is the group of all
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
s of ''V'', i.e. the set of all bijective linear transformations , together with functional composition as group operation. If ''V'' has finite
dimension In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), lin ...
''n'', then GL(''V'') and are
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
. The isomorphism is not canonical; it depends on a choice of
basis Basis may refer to: Finance and accounting *Adjusted basis, the net cost of an asset after adjusting for various tax-related items *Basis point, 0.01%, often used in the context of interest rates *Basis trading, a trading strategy consisting of ...
in ''V''. Given a basis of ''V'' and an automorphism ''T'' in GL(''V''), we have then for every basis vector ''e''''i'' that : T(e_i) = \sum_^n a_ e_j for some constants ''a''''ij'' in ''F''; the matrix corresponding to ''T'' is then just the matrix with entries given by the ''a''''ij''. In a similar way, for a commutative ring ''R'' the group may be interpreted as the group of automorphisms of a ''
free Free may refer to: Concept * Freedom, having the ability to do something, without having to obey anyone/anything * Freethought, a position that beliefs should be formed only on the basis of logic, reason, and empiricism * Emancipate, to procur ...
'' ''R''-module ''M'' of rank ''n''. One can also define GL(''M'') for any ''R''-module, but in general this is not isomorphic to (for any ''n'').


In terms of determinants

Over a field ''F'', a matrix is invertible if and only if its
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and ...
is nonzero. Therefore, an alternative definition of is as the group of matrices with nonzero determinant. Over a
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not sp ...
''R'', more care is needed: a matrix over ''R'' is invertible if and only if its determinant is a unit in ''R'', that is, if its determinant is invertible in ''R''. Therefore, may be defined as the group of matrices whose determinants are units. Over a non-commutative ring ''R'', determinants are not at all well behaved. In this case, may be defined as the unit group of the
matrix ring In abstract algebra, a matrix ring is a set of matrices with entries in a ring ''R'' that form a ring under matrix addition and matrix multiplication . The set of all matrices with entries in ''R'' is a matrix ring denoted M''n''(''R'')Lang, ''U ...
.


As a Lie group


Real case

The general linear group over the field of
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
s is a real
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
of dimension ''n''2. To see this, note that the set of all real matrices, M''n''(R), forms a real vector space of dimension ''n''2. The subset consists of those matrices whose
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and ...
is non-zero. The determinant is a
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exa ...
map, and hence is an open affine subvariety of M''n''(R) (a
non-empty In mathematics, the empty set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exists by inclu ...
open subset In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are suff ...
of M''n''(R) in the Zariski topology), and therefore a smooth manifold of the same dimension. The
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
of , denoted \mathfrak_n, consists of all real matrices with the
commutator In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, a ...
serving as the Lie bracket. As a manifold, is not connected but rather has two connected components: the matrices with positive determinant and the ones with negative determinant. The identity component, denoted by , consists of the real matrices with positive determinant. This is also a Lie group of dimension ''n''2; it has the same Lie algebra as . The polar decomposition, which is unique for invertible matrices, shows that there is a homeomorphism between and the Cartesian product of O(''n'') with the set of positive-definite symmetric matrices. Similarly, it shows that there is a homeomorphism between and the Cartesian product of SO(''n'') with the set of positive-definite symmetric matrices. Because the latter is contractible, the
fundamental group In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of ...
of is isomorphic to that of SO(''n''). The homeomorphism also shows that the group is noncompact. “The” maximal compact subgroup of is the
orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by ...
O(''n''), while "the" maximal compact subgroup of is the
special orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. T ...
SO(''n''). As for SO(''n''), the group is not
simply connected In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every path between two points can be continuously transformed (intuitively for embedded spaces, staying within the spac ...
(except when , but rather has a
fundamental group In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of ...
isomorphic to Z for or Z2 for .


Complex case

The general linear group over the field of
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s, , is a ''complex''
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
of complex dimension ''n''2. As a real Lie group (through realification) it has dimension 2''n''2. The set of all real matrices forms a real Lie subgroup. These correspond to the inclusions :GL(''n'', R) < GL(''n'', C) < GL(''2n'', R), which have real dimensions ''n''2, 2''n''2, and . Complex ''n''-dimensional matrices can be characterized as real 2''n''-dimensional matrices that preserve a linear complex structure — concretely, that commute with a matrix ''J'' such that , where ''J'' corresponds to multiplying by the imaginary unit ''i''. The
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
corresponding to consists of all complex matrices with the
commutator In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, a ...
serving as the Lie bracket. Unlike the real case, is connected. This follows, in part, since the multiplicative group of complex numbers C is connected. The group manifold is not compact; rather its maximal compact subgroup is the unitary group U(''n''). As for U(''n''), the group manifold is not
simply connected In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every path between two points can be continuously transformed (intuitively for embedded spaces, staying within the spac ...
but has a
fundamental group In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of ...
isomorphic to Z.


Over finite fields

If ''F'' is a
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
with ''q'' elements, then we sometimes write instead of . When ''p'' is prime, is the
outer automorphism group In mathematics, the outer automorphism group of a group, , is the quotient, , where is the automorphism group of and ) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted . If is trivial and has a t ...
of the group Z, and also the
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
group, because Z is abelian, so the inner automorphism group is trivial. The order of is: : \prod_^(q^n-q^k)=(q^n - 1)(q^n - q)(q^n - q^2)\ \cdots\ (q^n - q^). This can be shown by counting the possible columns of the matrix: the first column can be anything but the zero vector; the second column can be anything but the multiples of the first column; and in general, the ''k''th column can be any vector not in the
linear span In mathematics, the linear span (also called the linear hull or just span) of a set of vectors (from a vector space), denoted , pp. 29-30, §§ 2.5, 2.8 is defined as the set of all linear combinations of the vectors in . It can be characterized ...
of the first columns. In ''q''-analog notation, this is q!(q-1)^n q^. For example, has order . It is the automorphism group of the Fano plane and of the group Z, and is also known as . More generally, one can count points of Grassmannian over ''F'': in other words the number of subspaces of a given dimension ''k''. This requires only finding the order of the stabilizer subgroup of one such subspace and dividing into the formula just given, by the
orbit-stabilizer theorem In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism ...
. These formulas are connected to the
Schubert decomposition In mathematics, Schubert calculus is a branch of algebraic geometry introduced in the nineteenth century by Hermann Schubert, in order to solve various counting problems of projective geometry (part of enumerative geometry). It was a precursor o ...
of the Grassmannian, and are ''q''-analogs of the Betti numbers of complex Grassmannians. This was one of the clues leading to the Weil conjectures. Note that in the limit the order of goes to 0! – but under the correct procedure (dividing by ) we see that it is the order of the symmetric group (See Lorscheid's article) – in the philosophy of the field with one element, one thus interprets the symmetric group as the general linear group over the field with one element: .


History

The general linear group over a prime field, , was constructed and its order computed by
Évariste Galois Évariste Galois (; ; 25 October 1811 – 31 May 1832) was a French mathematician and political activist. While still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by radicals, ...
in 1832, in his last letter (to Chevalier) and second (of three) attached manuscripts, which he used in the context of studying the Galois group of the general equation of order ''p''''ν''.


Special linear group

The special linear group, , is the group of all matrices with
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and ...
1. They are special in that they lie on a
subvariety A subvariety (Latin: ''subvarietas'') in botanical nomenclature is a taxonomic rank. They are rarely used to classify organisms. Plant taxonomy Subvariety is ranked: *below that of variety (''varietas'') *above that of form (''forma''). Subva ...
– they satisfy a polynomial equation (as the determinant is a polynomial in the entries). Matrices of this type form a group as the determinant of the product of two matrices is the product of the determinants of each matrix. is a
normal subgroup In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group G i ...
of . If we write ''F''× for the multiplicative group of ''F'' (excluding 0), then the determinant is a group homomorphism :det: GL(''n'', ''F'') → ''F''×. that is surjective and its kernel is the special linear group. Therefore, by the first isomorphism theorem, is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
to ''F''×. In fact, can be written as a
semidirect product In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product: * an ''inner'' semidirect product is a particular way in w ...
: :GL(''n'', ''F'') = SL(''n'', ''F'') ⋊ ''F''× The special linear group is also the derived group (also known as commutator subgroup) of the GL(''n'', ''F'') (for a field or a division ring ''F'') provided that n \ne 2 or ''k'' is not the field with two elements., Theorem II.9.4 When ''F'' is R or C, is a
Lie subgroup In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the add ...
of of dimension . The
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
of consists of all matrices over ''F'' with vanishing
trace Trace may refer to: Arts and entertainment Music * Trace (Son Volt album), ''Trace'' (Son Volt album), 1995 * Trace (Died Pretty album), ''Trace'' (Died Pretty album), 1993 * Trace (band), a Dutch progressive rock band * The Trace (album), ''The ...
. The Lie bracket is given by the
commutator In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, a ...
. The special linear group can be characterized as the group of ''
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The de ...
and
orientation-preserving The orientation of a real vector space or simply orientation of a vector space is the arbitrary choice of which ordered bases are "positively" oriented and which are "negatively" oriented. In the three-dimensional Euclidean space, right-handed ...
'' linear transformations of R''n''. The group is simply connected, while is not. has the same fundamental group as , that is, Z for and Z2 for .


Other subgroups


Diagonal subgroups

The set of all invertible
diagonal matrices In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal ma ...
forms a subgroup of isomorphic to (''F''×)''n''. In fields like R and C, these correspond to rescaling the space; the so-called dilations and contractions. A scalar matrix is a diagonal matrix which is a constant times the
identity matrix In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial o ...
. The set of all nonzero scalar matrices forms a subgroup of isomorphic to ''F''×. This group is the center of . In particular, it is a normal, abelian subgroup. The center of is simply the set of all scalar matrices with unit determinant, and is isomorphic to the group of ''n''th roots of unity in the field ''F''.


Classical groups

The so-called classical groups are subgroups of GL(''V'') which preserve some sort of
bilinear form In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of which are called ''scalars''). In other words, a bilinear form is a function that is linear i ...
on a vector space ''V''. These include the *
orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by ...
, O(''V''), which preserves a
non-degenerate In mathematics, specifically linear algebra, a degenerate bilinear form on a vector space ''V'' is a bilinear form such that the map from ''V'' to ''V''∗ (the dual space of ''V'' ) given by is not an isomorphism. An equivalent definiti ...
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a ...
on ''V'', * symplectic group, Sp(''V''), which preserves a symplectic form on ''V'' (a non-degenerate alternating form), * unitary group, U(''V''), which, when , preserves a non-degenerate
hermitian form In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows o ...
on ''V''. These groups provide important examples of Lie groups.


Related groups and monoids


Projective linear group

The projective linear group and the
projective special linear group In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space ''V'' on the associate ...
are the quotients of and by their
centers Center or centre may refer to: Mathematics * Center (geometry), the middle of an object * Center (algebra), used in various contexts ** Center (group theory) ** Center (ring theory) * Graph center, the set of all vertices of minimum eccentrici ...
(which consist of the multiples of the identity matrix therein); they are the induced action on the associated
projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
.


Affine group

The affine group is an
extension Extension, extend or extended may refer to: Mathematics Logic or set theory * Axiom of extensionality * Extensible cardinal * Extension (model theory) * Extension (predicate logic), the set of tuples of values that satisfy the predicate * E ...
of by the group of translations in ''F''''n''. It can be written as a
semidirect product In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product: * an ''inner'' semidirect product is a particular way in w ...
: :Aff(''n'', ''F'') = GL(''n'', ''F'') ⋉ ''F''''n'' where acts on ''F''''n'' in the natural manner. The affine group can be viewed as the group of all
affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, ...
s of the affine space underlying the vector space ''F''''n''. One has analogous constructions for other subgroups of the general linear group: for instance, the
special affine group In mathematics, the affine group or general affine group of any affine space over a field is the group of all invertible affine transformations from the space into itself. It is a Lie group if is the real or complex field or quaternions. Re ...
is the subgroup defined by the semidirect product, , and the Poincaré group is the affine group associated to the Lorentz group, .


General semilinear group

The
general semilinear group In linear algebra, particularly projective geometry, a semilinear map between vector spaces ''V'' and ''W'' over a field ''K'' is a function that is a linear map "up to a twist", hence ''semi''-linear, where "twist" means "field automorphism of ''K' ...
is the group of all invertible
semilinear transformation In linear algebra, particularly projective geometry, a semilinear map between vector spaces ''V'' and ''W'' over a field ''K'' is a function that is a linear map "up to a twist", hence ''semi''-linear, where "twist" means "field automorphism of ''K' ...
s, and contains GL. A semilinear transformation is a transformation which is linear “up to a twist”, meaning “up to a field automorphism under scalar multiplication”. It can be written as a semidirect product: :ΓL(''n'', ''F'') = Gal(''F'') ⋉ GL(''n'', ''F'') where Gal(''F'') is the Galois group of ''F'' (over its prime field), which acts on by the Galois action on the entries. The main interest of is that the associated
projective semilinear group In linear algebra, particularly projective geometry, a semilinear map between vector spaces ''V'' and ''W'' over a field ''K'' is a function that is a linear map "up to a twist", hence ''semi''-linear, where "twist" means "field automorphism of ''K' ...
(which contains is the
collineation group In projective geometry, a collineation is a one-to-one and onto map (a bijection) from one projective space to another, or from a projective space to itself, such that the images of collinear points are themselves collinear. A collineation is thus ...
of
projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
, for , and thus semilinear maps are of interest in projective geometry.


Full linear monoid

If one removes the restriction of the determinant being non-zero, the resulting algebraic structure is a
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids ...
, usually called the full linear monoid, but occasionally also ''full linear semigroup'', ''general linear monoid'' etc. It is actually a regular semigroup.


Infinite general linear group

The infinite general linear group or
stable A stable is a building in which livestock, especially horses, are kept. It most commonly means a building that is divided into separate stalls for individual animals and livestock. There are many different types of stables in use today; the ...
general linear group is the
direct limit In mathematics, a direct limit is a way to construct a (typically large) object from many (typically smaller) objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any categor ...
of the inclusions as the upper left
block matrix In mathematics, a block matrix or a partitioned matrix is a matrix that is '' interpreted'' as having been broken into sections called blocks or submatrices. Intuitively, a matrix interpreted as a block matrix can be visualized as the original mat ...
. It is denoted by either GL(''F'') or , and can also be interpreted as invertible infinite matrices which differ from the identity matrix in only finitely many places. It is used in algebraic K-theory to define K1, and over the reals has a well-understood topology, thanks to Bott periodicity. It should not be confused with the space of (bounded) invertible operators on a
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
, which is a larger group, and topologically much simpler, namely contractible – see
Kuiper's theorem In mathematics, Kuiper's theorem (after Nicolaas Kuiper) is a result on the topology of operators on an infinite-dimensional, complex Hilbert space ''H''. It states that the space GL(''H'') of invertible bounded endomorphisms of ''H'' is such ...
.


See also

* List of finite simple groups * SL2(R) * Representation theory of SL2(R) * Representations of classical Lie groups


Notes


References

*


External links

*{{springer, title=General linear group, id=p/g043680
"GL(2, ''p'') and GL(3, 3) Acting on Points"
by
Ed Pegg, Jr. Edward Taylor Pegg Jr. (born December 7, 1963) is an expert on mathematical puzzles and is a self-described recreational mathematician. He wrote an online puzzle column called Ed Pegg Jr.'s ''Math Games'' for the Mathematical Association of Amer ...
, Wolfram Demonstrations Project, 2007. Abstract algebra Linear algebra Lie groups Linear algebraic groups