HOME

TheInfoList



OR:

Induction heating is the process of heating electrically conductive materials, namely metals or semi-conductors, by
electromagnetic induction Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk ...
, through heat transfer passing through an
induction coil An induction coil or "spark coil" (archaically known as an inductorium or Ruhmkorff coil after Heinrich Rühmkorff) is a type of electrical transformer used to produce high-voltage pulses from a low-voltage direct current (DC) supply. p.98 To ...
that creates an
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
within the coil to heat up and possibly melt steel, copper, brass, graphite, gold, silver, aluminum, or carbide. An induction heater consists of an
electromagnet An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in the ...
and an
electronic oscillator An electronic oscillator is an electronic circuit that produces a periodic, oscillation, oscillating electronic signal, often a sine wave or a square wave or a triangle wave. Oscillation, Oscillators convert direct current (DC) from a power supp ...
that passes a high-frequency
alternating current Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time in contrast to direct current (DC) which flows only in one direction. Alternating current is the form in whic ...
(AC) through the electromagnet. The rapidly alternating
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
penetrates the object, generating
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving pa ...
s inside the conductor called
eddy currents Eddy currents (also called Foucault's currents) are loops of electrical current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a magn ...
. The eddy currents flow through the resistance of the material, and heat it by
Joule heating Joule heating, also known as resistive, resistance, or Ohmic heating, is the process by which the passage of an electric current through a conductor (material), conductor produces heat. Joule's first law (also just Joule's law), also known in c ...
. In
ferromagnetic Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
and
ferrimagnetic A ferrimagnetic material is a material that has populations of atoms with opposing magnetic moments, as in antiferromagnetism, but these moments are unequal in magnitude so a spontaneous magnetization remains. This can for example occur when ...
materials, such as
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
, heat also is generated by magnetic
hysteresis Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of ...
losses. The
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
of the electric current used for induction heating depends on the object size, material type, coupling (between the work coil and the object to be heated), and the penetration depth. An important feature of the induction heating process is that the heat is generated inside the object itself, instead of by an external heat source via heat conduction. Thus objects can be heated very rapidly. In addition, there need not be any external contact, which can be important where contamination is an issue. Induction heating is used in many industrial processes, such as heat treatment in
metallurgy Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are known as alloys. Metallurgy encompasses both the sc ...
, Czochralski crystal growth and
zone refining Zone melting (or zone refining, or floating-zone method, or floating-zone technique) is a group of similar methods of purifying crystals, in which a narrow region of a crystal is melted, and this molten zone is moved along the crystal. The molte ...
used in the semiconductor industry, and to melt
refractory metal Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials science, metallurgy and engineering. The definition of which elements belong to this group diff ...
s that require very high temperatures. It is also used in induction cooktops.


Applications

Induction heating allows the targeted heating of an applicable item for applications including surface hardening, melting,
brazing Brazing is a metal-joining process in which two or more metal items are joined together by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal. Brazing differs from we ...
and soldering, and heating to fit. Due to their ferromagnetic nature, iron and its alloys respond best to induction heating. Eddy currents can, however, be generated in any conductor, and
magnetic hysteresis Magnetic hysteresis occurs when an external magnetic field is applied to a ferromagnet such as iron and the atomic dipoles align themselves with it. Even when the field is removed, part of the alignment will be retained: the material has become '' ...
can occur in any magnetic material. Induction heating has been used to heat liquid conductors (such as molten metals) and also gaseous conductors (such as a gas plasma—see
Induction plasma technology Induction plasma, also called inductively coupled plasma, is a type of high temperature plasma generated by electromagnetic induction, usually coupled with argon gas. The magnetic field induces an electric current within the gas which creates the p ...
). Induction heating is often used to heat graphite crucibles (containing other materials) and is used extensively in the semiconductor industry for the heating of silicon and other semiconductors.
Utility frequency The utility frequency, (power) line frequency (American English) or mains frequency (British English) is the nominal frequency of the oscillations of alternating current (AC) in a wide area synchronous grid transmitted from a power station to th ...
(50/60 Hz) induction heating is used for many lower-cost industrial applications as
inverters A power inverter, inverter or invertor is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC). The resulting AC frequency obtained depends on the particular device employed. Inverters do the opp ...
are not required.


Furnace

An
induction furnace An induction furnace is an electrical furnace in which the heat is applied by induction heating of metal. Induction furnace capacities range from less than one kilogram to one hundred tons, and are used to melt iron and steel, copper, aluminum ...
uses induction to heat metal to its melting point. Once molten, the high-frequency magnetic field can also be used to stir the hot metal, which is useful in ensuring that alloying additions are fully mixed into the melt. Most induction furnaces consist of a tube of water-cooled copper rings surrounding a container of
refractory In materials science, a refractory material or refractory is a material that is resistant to decomposition by heat, pressure, or chemical attack, and retains strength and form at high temperatures. Refractories are polycrystalline, polyphase, ...
material. Induction furnaces are used in most modern foundries as a cleaner method of melting metals than a
reverberatory furnace A reverberatory furnace is a metallurgical or process furnace that isolates the material being processed from contact with the fuel, but not from contact with combustion gases. The term ''reverberation'' is used here in a generic sense of ''rebo ...
or a
cupola In architecture, a cupola () is a relatively small, most often dome-like, tall structure on top of a building. Often used to provide a lookout or to admit light and air, it usually crowns a larger roof or dome. The word derives, via Italian, from ...
. Sizes range from a kilogram of capacity to a hundred tonnes. Induction furnaces often emit a high-pitched whine or hum when they are running, depending on their operating frequency. Metals melted include iron and
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
, copper, aluminium, and
precious metal Precious metals are rare, naturally occurring metallic chemical elements of high economic value. Chemically, the precious metals tend to be less reactive than most elements (see noble metal). They are usually ductile and have a high lustre. ...
s. Because it is a clean and non-contact process, it can be used in a vacuum or inert atmosphere. Vacuum furnaces use induction heating to produce specialty steels and other alloys that would oxidize if heated in the presence of air.


Welding

A similar, smaller-scale process is used for induction welding.
Plastics Plastics are a wide range of synthetic polymers, synthetic or semi-synthetic materials that use polymers as a main ingredient. Their Plasticity (physics), plasticity makes it possible for plastics to be Injection moulding, moulded, Extrusion, e ...
may also be welded by induction, if they are either doped with ferromagnetic ceramics (where magnetic hysteresis of the particles provides the heat required) or by metallic particles. Seams of tubes can be welded this way. Currents induced in a tube run along the open seam and heat the edges resulting in a temperature high enough for welding. At this point, the seam edges are forced together and the seam is welded. The RF current can also be conveyed to the tube by brushes, but the result is still the same—the current flows along the open seam, heating it.


Manufacturing

In the Rapid Induction Printing metal additive printing process, a conductive wire feedstock and shielding gas is fed through a coiled nozzle, subjecting the feedstock to induction heating and ejection from the nozzle as a liquid, in order to refuse under shielding to form three-dimensional metal structures. The core benefit of the procedural use of induction heating in this process is significantly greater energy and material efficiency as well as a higher degree of safety when compared with other additive manufacturing methods, such as
selective laser sintering Selective laser sintering (SLS) is an additive manufacturing (AM) technique that uses a laser as the power and heat source to sinter powdered material (typically nylon or polyamide), aiming the laser automatically at points in space defined b ...
, which deliver heat to the material using a powerful laser or electron beam.


Cooking

In induction cooking, an induction coil inside the cooktop heats the iron base of cookware by magnetic induction. Using induction cookers produces safety, efficiency (the induction cooktop is not heated itself), and speed. Non-ferrous pans such as copper-bottomed pans and
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
pans are generally unsuitable. By
thermal conduction Conduction is the process by which heat is transferred from the hotter end to the colder end of an object. The ability of the object to conduct heat is known as its ''thermal conductivity'', and is denoted . Heat spontaneously flows along a tem ...
, the heat-induced in the base is transferred to the food inside.


Brazing

Induction brazing is often used in higher production runs. It produces uniform results and is very repeatable. There are many types of industrial equipment where induction brazing is used. For instance, Induction is used for brazing carbide to a shaft.


Sealing

Induction heating is used in ''cap sealing'' of containers in the food and pharmaceutical industries. A layer of aluminum foil is placed over the bottle or jar opening and heated by induction to fuse it to the container. This provides a tamper-resistant seal since altering the contents requires breaking the foil.


Heating to fit

Induction heating is often used to heat an item causing it to expand before fitting or assembly. Bearings are routinely heated in this way using utility frequency (50/60 Hz) and a laminated steel transformer-type core passing through the centre of the bearing.


Heat treatment

Induction heating is often used in the heat treatment of metal items. The most common applications are
induction hardening Induction hardening is a type of surface hardening in which a metal part is induction-heated and then quenched. The quenched metal undergoes a martensitic transformation, increasing the hardness and brittleness of the part. Induction hardening is ...
of steel parts, induction
soldering Soldering (; ) is a process in which two or more items are joined by melting and putting a filler metal (solder) into the joint, the filler metal having a lower melting point than the adjoining metal. Unlike welding, soldering does not involv ...
/brazing as a means of joining metal components, and induction annealing to selectively soften an area of a steel part. Induction heating can produce high-power densities which allow short interaction times to reach the required temperature. This gives tight control of the heating pattern with the pattern following the applied magnetic field quite closely and allows reduced thermal distortion and damage. This ability can be used in hardening to produce parts with varying properties. The most common hardening process is to produce a localised surface hardening of an area that needs wear resistance while retaining the toughness of the original structure as needed elsewhere. The depth of induction hardened patterns can be controlled through the choice of induction frequency, power density, and interaction time. Limits to the flexibility of the process arise from the need to produce dedicated inductors for many applications. This is quite expensive and requires the marshalling of high-current densities in small copper inductors, which can require specialized engineering and "copper-fitting."


Plastic processing

Induction heating is used in plastic
injection molding machine An injection molding machine (also spelled as injection moulding machine in BrE), also known as an injection press, is a machine for manufacturing plastic products by the injection molding process. It consists of two main parts, an ''injectio ...
s. Induction heating improves energy efficiency for injection and extrusion processes. Heat is directly generated in the barrel of the machine, reducing warm-up time and energy consumption. The induction coil can be placed outside thermal insulation, so it operates at low temperatures and has a long life. The frequency used ranges from 30 kHz down to 5 kHz, decreasing for thicker barrels. The reduction in the cost of inverter equipment has made induction heating increasingly popular. Induction heating can also be applied to molds, offering more even mold temperature and improved product quality.


Pyrolysis

Induction heating is used to obtain
biochar Biochar is the lightweight black residue, made of carbon and Ash (analytical chemistry), ashes, remaining after the pyrolysis of biomass. Biochar is defined by the International Biochar Initiative as "the solid material obtained from the th ...
in the pyrolysis of biomass. Heat is directly generated into shaker reactor walls, enabling the pyrolysis of the biomass with good mixing and temperature control.


Details

The basic setup is an AC power supply that provides electricity with low
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to m ...
but very high current and high frequency. The workpiece to heat is placed inside an air coil driven by the power supply, usually in combination with a resonant tank capacitor to increase the reactive power. The alternating magnetic field induces eddy currents in the workpiece. The frequency of the inductive current determines the depth that the induced eddy currents penetrate the workpiece. In the simplest case of a solid round bar, the induced current decreases exponentially from the surface. An "effective" depth of the current-carrying layers can be derived as d = 5000 \sqrt, where d is the depth in centimeters, \rho is the
resistivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
of the workpiece in ohm-centimeters, \mu is the dimensionless
relative magnetic permeability In electromagnetism, permeability is the measure of magnetization that a material obtains in response to an applied magnetic field. Permeability is typically represented by the (italicized) Greek letter ''μ''. The term was coined by Willi ...
of the workpiece, and f is the frequency of the AC field in Hz. The AC field can be calculated using the formula . The equivalent resistance of the workpiece and thus the efficiency is a function of the workpiece diameter a over the reference depth d, increasing rapidly up to about a/d=4. Since the workpiece diameter is fixed by the application, the value of a/d is determined by the reference depth. Decreasing the reference depth requires increasing the frequency. Since the cost of induction power supplies increases with frequency, supplies are often optimized to achieve a critical frequency at which a/d=4. If operated below the critical frequency, heating efficiency is reduced because eddy currents from either side of the workpiece impinge upon one another and cancel out. Increasing the frequency beyond the critical frequency creates minimal further improvement in heating efficiency, although it is used in applications that seek to heat treat only the surface of the workpiece. Relative depth varies with temperature because resistivities and permeability vary with temperature. For steel, the relative permeability drops to 1 above the
Curie temperature In physics and materials science, the Curie temperature (''T''C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Cur ...
. Thus the reference depth can vary with temperature by a factor of 2–3 for nonmagnetic conductors and by as much as 20 for magnetic steels.S. Zinn and S. L. Semiatin ''Elements of Induction Heating'' ASM International, 1988 page 16 Magnetic materials improve the induction heat process because of
hysteresis Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of ...
. Materials with high permeability (100–500) are easier to heat with induction heating. Hysteresis heating occurs below the Curie temperature, where materials retain their magnetic properties. High permeability below the Curie temperature in the workpiece is useful. Temperature difference, mass, and specific heat influence the workpiece heating. The energy transfer of induction heating is affected by the distance between the coil and the workpiece. Energy losses occur through heat conduction from workpiece to fixture,
natural convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convect ...
, and
thermal radiation Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. Thermal radiation is generated when heat from the movement of charges in the material (electrons and protons in common forms of matter) is ...
. The induction coil is usually made of copper tubing and fluid coolant. Diameter, shape, and number of turns influence the efficiency and field pattern.


Core type furnace

The furnace consists of a circular hearth that contains the charge to be melted in the form of a ring. The metal ring is large in diameter and is magnetically interlinked with an electrical winding energized by an AC source. It is essentially a transformer where the charge to be heated forms a single-turn short circuit secondary and is magnetically coupled to the primary by an iron core.


References

* Brown, George Harold, Cyril N. Hoyler, and Rudolph A. Bierwirth, ''Theory and application of radio-frequency heating''. New York, D. Van Nostrand Company, Inc., 1947. LCCN 47003544 * Hartshorn, Leslie, ''Radio-frequency heating''. London, G. Allen & Unwin, 1949. LCCN 50002705 * Langton, L. L., ''Radio-frequency heating equipment, with particular reference to the theory and design of self-excited power oscillators''. London, Pitman, 1949. LCCN 50001900 * Shields, John Potter, ''Abc's of radio-frequency heating''. 1st ed., Indianapolis, H. W. Sams, 1969. LCCN 76098943 * Sovie, Ronald J., and George R. Seikel, ''Radio-frequency induction heating of low-pressure plasmas''. Washington, D.C. : National Aeronautics and Space Administration ; Springfield, Va.: Clearinghouse for Federal Scientific and Technical Information, October 1967. NASA technical note. D-4206; Prepared at Lewis Research Center. {{Authority control Heating Electrodynamics