In
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
, a branch of
mathematics, two
continuous functions from one
topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, ; , ) between the two functions. A notable use of homotopy is the definition of
homotopy groups and
cohomotopy groups, important
invariants in
algebraic topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classif ...
.
In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with
compactly generated spaces,
CW complexes, or
spectra.
Formal definition
Formally, a homotopy between two
continuous functions ''f'' and ''g'' from a
topological space ''X'' to a topological space ''Y'' is defined to be a continuous function
from the
product of the space ''X'' with the
unit interval
In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted ' (capital letter ). In addition to its role in real analys ...
, 1to ''Y'' such that
and
for all
.
If we think of the second
parameter
A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when ...
of ''H'' as time then ''H'' describes a ''continuous deformation'' of ''f'' into ''g'': at time 0 we have the function ''f'' and at time 1 we have the function ''g''. We can also think of the second parameter as a "slider control" that allows us to smoothly transition from ''f'' to ''g'' as the slider moves from 0 to 1, and vice versa.
An alternative notation is to say that a homotopy between two continuous functions
is a family of continuous functions
for