HOME

TheInfoList



OR:

In
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, ; , ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classif ...
. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra.


Formal definition

Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the
unit interval In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted ' (capital letter ). In addition to its role in real analys ...
, 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the second
parameter A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when ...
of ''H'' as time then ''H'' describes a ''continuous deformation'' of ''f'' into ''g'': at time 0 we have the function ''f'' and at time 1 we have the function ''g''. We can also think of the second parameter as a "slider control" that allows us to smoothly transition from ''f'' to ''g'' as the slider moves from 0 to 1, and vice versa. An alternative notation is to say that a homotopy between two continuous functions f, g: X \to Y is a family of continuous functions h_t: X \to Y for t \in ,1/math> such that h_0 = f and h_1 = g, and the map (x, t) \mapsto h_t(x) is continuous from X \times ,1/math> to Y. The two versions coincide by setting h_t(x) = H(x,t). It is not sufficient to require each map h_t(x) to be continuous. The animation that is looped above right provides an example of a homotopy between two embeddings, ''f'' and ''g'', of the torus into . ''X'' is the torus, ''Y'' is , ''f'' is some continuous function from the torus to ''R''3 that takes the torus to the embedded surface-of-a-doughnut shape with which the animation starts; ''g'' is some continuous function that takes the torus to the embedded surface-of-a-coffee-mug shape. The animation shows the image of ''h''''t''(''x'') as a function of the parameter ''t'', where ''t'' varies with time from 0 to 1 over each cycle of the animation loop. It pauses, then shows the image as ''t'' varies back from 1 to 0, pauses, and repeats this cycle.


Properties

Continuous functions ''f'' and ''g'' are said to be homotopic if and only if there is a homotopy ''H'' taking ''f'' to ''g'' as described above. Being homotopic is an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relatio ...
on the set of all continuous functions from ''X'' to ''Y''. This homotopy relation is compatible with function composition in the following sense: if are homotopic, and are homotopic, then their compositions and are also homotopic.


Examples

* If f, g: \R \to \R^2 are given by f(x) := \left(x, x^3\right) and g(x) = \left(x, e^x\right), then the map H: \mathbb \times , 1\to \mathbb^2 given by H(x, t) = \left(x, (1 - t)x^3 + te^x\right) is a homotopy between them. * More generally, if C \subseteq \mathbb^n is a convex subset of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
and f, g: , 1\to C are paths with the same endpoints, then there is a linear homotopy (or straight-line homotopy) given by *: \begin H: , 1\times , 1&\longrightarrow C \\ (s, t) &\longmapsto (1 - t)f(s) + tg(s). \end * Let \operatorname_:B^n\to B^n be the
identity function Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
on the unit ''n''- disk; i.e. the set B^n := \left\. Let c_: B^n \to B^n be the constant function c_\vec(x) := \vec which sends every point to the
origin Origin(s) or The Origin may refer to: Arts, entertainment, and media Comics and manga * ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002 * ''The Origin'' (Buffy comic), a 1999 ''Buffy the Vampire Sl ...
. Then the following is a homotopy between them: *: \begin H: B^n \times , 1&\longrightarrow B^n \\ (x, t) &\longmapsto (1 - t)x. \end


Homotopy equivalence

Given two topological spaces ''X'' and ''Y'', a homotopy equivalence between ''X'' and ''Y'' is a pair of continuous maps and , such that is homotopic to the identity map id''X'' and is homotopic to id''Y''. If such a pair exists, then ''X'' and ''Y'' are said to be homotopy equivalent, or of the same homotopy type. Intuitively, two spaces ''X'' and ''Y'' are homotopy equivalent if they can be transformed into one another by bending, shrinking and expanding operations. Spaces that are homotopy-equivalent to a point are called contractible.


Homotopy equivalence vs. homeomorphism

A homeomorphism is a special case of a homotopy equivalence, in which is equal to the identity map id''X'' (not only homotopic to it), and is equal to id''Y''. Therefore, if X and Y are homeomorphic then they are homotopy-equivalent, but the opposite is not true. Some examples: * A solid disk is homotopy-equivalent to a single point, since you can deform the disk along radial lines continuously to a single point. However, they are not homeomorphic, since there is no bijection between them (since one is an infinite set, while the other is finite). * The Möbius strip and an untwisted (closed) strip are homotopy equivalent, since you can deform both strips continuously to a circle. But they are not homeomorphic.


Examples

* The first example of a homotopy equivalence is \mathbb^n with a point, denoted \mathbb^n \simeq \. The part that needs to be checked is the existence of a homotopy H: I \times \mathbb^n \to \mathbb^n between \operatorname_ and p_0, the projection of \mathbb^n onto the origin. This can be described as H(t,\cdot) = t\cdot p_0 + (1-t)\cdot\operatorname_. * There is a homotopy equivalence between S^1 (the 1-sphere) and \mathbb^2-\. ** More generally, \mathbb^n-\ \simeq S^. * Any fiber bundle \pi: E \to B with fibers F_b homotopy equivalent to a point has homotopy equivalent total and base spaces. This generalizes the previous two examples since \pi:\mathbb^n - \ \to S^is a fiber bundle with fiber \mathbb_. * Every
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to ev ...
is a fiber bundle with a fiber homotopy equivalent to a point. * \mathbb^n - \mathbb^k \simeq S^ for any 0 \le k < n, by writing \mathbb^n - \mathbb^k as the total space of the fiber bundle \mathbb^k \times (\mathbb^-\)\to (\mathbb^-\), then applying the homotopy equivalences above. * If a subcomplex A of a CW complex X is contractible, then the
quotient space Quotient space may refer to a quotient set when the sets under consideration are considered as spaces. In particular: *Quotient space (topology), in case of topological spaces * Quotient space (linear algebra), in case of vector spaces *Quotient ...
X/A is homotopy equivalent to X. * A deformation retraction is a homotopy equivalence.


Null-homotopy

A function ''f'' is said to be null-homotopic if it is homotopic to a constant function. (The homotopy from ''f'' to a constant function is then sometimes called a null-homotopy.) For example, a map ''f'' from the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
''S''1 to any space ''X'' is null-homotopic precisely when it can be continuously extended to a map from the unit disk ''D''2 to ''X'' that agrees with ''f'' on the boundary. It follows from these definitions that a space ''X'' is contractible if and only if the identity map from ''X'' to itself—which is always a homotopy equivalence—is null-homotopic.


Invariance

Homotopy equivalence is important because in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classif ...
many concepts are homotopy invariant, that is, they respect the relation of homotopy equivalence. For example, if ''X'' and ''Y'' are homotopy equivalent spaces, then: * ''X'' is path-connected if and only if ''Y'' is. * ''X'' is simply connected if and only if ''Y'' is. * The (singular) homology and cohomology groups of ''X'' and ''Y'' are isomorphic. * If ''X'' and ''Y'' are path-connected, then the fundamental groups of ''X'' and ''Y'' are isomorphic, and so are the higher homotopy groups. (Without the path-connectedness assumption, one has π1(''X'', ''x''0) isomorphic to π1(''Y'', ''f''(''x''0)) where is a homotopy equivalence and An example of an algebraic invariant of topological spaces which is not homotopy-invariant is
compactly supported homology In mathematics, a Homology (mathematics), homology theory in algebraic topology is compactly supported if, in every degree ''n'', the relative homology group H''n''(''X'', ''A'') of every pair of spaces :(''X'', ''A'') is naturally isomorphic to t ...
(which is, roughly speaking, the homology of the
compactification Compactification may refer to: * Compactification (mathematics), making a topological space compact * Compactification (physics), the "curling up" of extra dimensions in string theory See also * Compaction (disambiguation) {{disambiguation ...
, and compactification is not homotopy-invariant).


Variants


Relative homotopy

In order to define the fundamental group, one needs the notion of homotopy relative to a subspace. These are homotopies which keep the elements of the subspace fixed. Formally: if ''f'' and ''g'' are continuous maps from ''X'' to ''Y'' and ''K'' is a
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
of ''X'', then we say that ''f'' and ''g'' are homotopic relative to ''K'' if there exists a homotopy between ''f'' and ''g'' such that for all and Also, if ''g'' is a
retraction Retraction or retract(ed) may refer to: Academia * Retraction in academic publishing, withdrawals of previously published academic journal articles Mathematics * Retraction (category theory) * Retract (group theory) * Retraction (topology) Huma ...
from ''X'' to ''K'' and ''f'' is the identity map, this is known as a strong
deformation retract In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. The subspace is then called a retract of the original space. A deform ...
of ''X'' to ''K''. When ''K'' is a point, the term pointed homotopy is used.


Isotopy

In case the two given continuous functions ''f'' and ''g'' from the topological space ''X'' to the topological space ''Y'' are embeddings, one can ask whether they can be connected 'through embeddings'. This gives rise to the concept of isotopy, which is a homotopy, ''H'', in the notation used before, such that for each fixed ''t'', ''H''(''x'', ''t'') gives an embedding. A related, but different, concept is that of ambient isotopy. Requiring that two embeddings be isotopic is a stronger requirement than that they be homotopic. For example, the map from the interval 1, 1into the real numbers defined by ''f''(''x'') = −''x'' is ''not'' isotopic to the identity ''g''(''x'') = ''x''. Any homotopy from ''f'' to the identity would have to exchange the endpoints, which would mean that they would have to 'pass through' each other. Moreover, ''f'' has changed the orientation of the interval and ''g'' has not, which is impossible under an isotopy. However, the maps are homotopic; one homotopy from ''f'' to the identity is ''H'':  1, 1nbsp;×  , 1nbsp;→  1, 1given by ''H''(''x'', ''y'') = 2''yx'' − ''x''. Two homeomorphisms (which are special cases of embeddings) of the unit ball which agree on the boundary can be shown to be isotopic using Alexander's trick. For this reason, the map of the unit disc in R2 defined by ''f''(''x'', ''y'') = (−''x'', −''y'') is isotopic to a 180-degree rotation around the origin, and so the identity map and ''f'' are isotopic because they can be connected by rotations. In geometric topology—for example in knot theory—the idea of isotopy is used to construct equivalence relations. For example, when should two knots be considered the same? We take two knots, ''K''1 and ''K''2, in three-
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
al space. A knot is an embedding of a one-dimensional space, the "loop of string" (or the circle), into this space, and this embedding gives a homeomorphism between the circle and its image in the embedding space. The intuitive idea behind the notion of knot equivalence is that one can ''deform'' one embedding to another through a path of embeddings: a continuous function starting at ''t'' = 0 giving the ''K''1 embedding, ending at ''t'' = 1 giving the ''K''2 embedding, with all intermediate values corresponding to embeddings. This corresponds to the definition of isotopy. An ambient isotopy, studied in this context, is an isotopy of the larger space, considered in light of its action on the embedded submanifold. Knots ''K''1 and ''K''2 are considered equivalent when there is an ambient isotopy which moves ''K''1 to ''K''2. This is the appropriate definition in the topological category. Similar language is used for the equivalent concept in contexts where one has a stronger notion of equivalence. For example, a path between two smooth embeddings is a smooth isotopy.


Timelike homotopy

On a Lorentzian manifold, certain curves are distinguished as timelike (representing something that only goes forwards, not backwards, in time, in every local frame). A
timelike homotopy On a Lorentzian manifold, certain curves are distinguished as timelike. A timelike homotopy between two timelike curves is a homotopy such that each intermediate curve is timelike. No closed timelike curve (CTC) on a Lorentzian manifold is timelike ...
between two timelike curves is a homotopy such that the curve remains timelike during the continuous transformation from one curve to another. No closed timelike curve (CTC) on a Lorentzian manifold is timelike homotopic to a point (that is, null timelike homotopic); such a manifold is therefore said to be multiply connected by timelike curves. A manifold such as the 3-sphere can be simply connected (by any type of curve), and yet be timelike multiply connected.


Properties


Lifting and extension properties

If we have a homotopy and a cover and we are given a map such that (''h''0 is called a lift of ''h''0), then we can lift all ''H'' to a map such that The homotopy lifting property is used to characterize fibrations. Another useful property involving homotopy is the homotopy extension property, which characterizes the extension of a homotopy between two functions from a subset of some set to the set itself. It is useful when dealing with cofibrations.


Groups

Since the relation of two functions f, g\colon X\to Y being homotopic relative to a subspace is an equivalence relation, we can look at the
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
es of maps between a fixed ''X'' and ''Y''. If we fix X = ,1n, the unit interval , 1 crossed with itself ''n'' times, and we take its boundary \partial( ,1n) as a subspace, then the equivalence classes form a group, denoted \pi_n(Y,y_0), where y_0 is in the image of the subspace \partial( ,1n). We can define the action of one equivalence class on another, and so we get a group. These groups are called the homotopy groups. In the case n = 1, it is also called the fundamental group.


Homotopy category

The idea of homotopy can be turned into a formal category of category theory. The homotopy category is the category whose objects are topological spaces, and whose morphisms are homotopy equivalence classes of continuous maps. Two topological spaces ''X'' and ''Y'' are isomorphic in this category if and only if they are homotopy-equivalent. Then a functor on the category of topological spaces is homotopy invariant if it can be expressed as a functor on the homotopy category. For example, homology groups are a ''functorial'' homotopy invariant: this means that if ''f'' and ''g'' from ''X'' to ''Y'' are homotopic, then the group homomorphisms induced by ''f'' and ''g'' on the level of homology groups are the same: H''n''(''f'') = H''n''(''g'') : H''n''(''X'') → H''n''(''Y'') for all ''n''. Likewise, if ''X'' and ''Y'' are in addition path connected, and the homotopy between ''f'' and ''g'' is pointed, then the group homomorphisms induced by ''f'' and ''g'' on the level of homotopy groups are also the same: π''n''(''f'') = π''n''(''g'') : π''n''(''X'') → π''n''(''Y'').


Applications

Based on the concept of the homotopy, computation methods for algebraic and
differential equations In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, a ...
have been developed. The methods for algebraic equations include the
homotopy continuation Numerical algebraic geometry is a field of computational mathematics, particularly computational algebraic geometry, which uses methods from numerical analysis to study and manipulate the solutions of systems of polynomial equations. Homotopy conti ...
method and the continuation method (see
numerical continuation Numerical continuation is a method of computing approximate solutions of a system of parameterized nonlinear equations, :F(\mathbf u,\lambda) = 0. The ''parameter'' \lambda is usually a real scalar, and the ''solution'' \mathbf u an ''n''-vector. ...
). The methods for differential equations include the
homotopy analysis method The homotopy analysis method (HAM) is a semi-analytical technique to solve nonlinear ordinary/partial differential equations. The homotopy analysis method employs the concept of the homotopy from topology to generate a convergent series solut ...
. Homotopy theory can be used as a foundation for homology theory: one can represent a cohomology functor on a space ''X'' by mappings of ''X'' into an appropriate fixed space, up to homotopy equivalence. For example, for any abelian group ''G'', and any based CW-complex ''X'', the set ,K(G,n)/math> of based homotopy classes of based maps from ''X'' to the  Eilenberg–MacLane space K(G,n) is in natural bijection with the ''n''-th singular cohomology group H^n(X,G) of the space ''X''. One says that the omega-spectrum of Eilenberg-MacLane spaces are representing spaces for singular cohomology with coefficients in ''G''.


See also

* Fiber-homotopy equivalence (relative version of a homotopy equivalence) *
Homeotopy In algebraic topology, an area of mathematics, a homeotopy group of a topological space is a homotopy group of the group of self-homeomorphisms of that space. Definition The homotopy group functors \pi_k assign to each path-connected topologica ...
* Homotopy type theory * Mapping class group * Poincaré conjecture *
Regular homotopy In the mathematical field of topology, a regular homotopy refers to a special kind of homotopy between immersions of one manifold in another. The homotopy must be a 1-parameter family of immersions. Similar to homotopy classes, one defines two imme ...


References


Sources

* * * * {{Authority control * Theory of continuous functions Maps of manifolds