HOME





Homeotopy
In algebraic topology, an area of mathematics, a homeotopy group of a topological space is a homotopy group of the group of self-homeomorphisms of that space. Definition The homotopy group functors \pi_k assign to each path-connected topological space X the group \pi_k(X) of homotopy classes of continuous maps S^k\to X. Another construction on a space X is the group of all self-homeomorphisms X \to X, denoted (X). If ''X'' is a locally compact, locally connected Hausdorff space then a fundamental result of R. Arens says that (X) will in fact be a topological group under the compact-open topology. Under the above assumptions, the homeotopy groups for X are defined to be: :HME_k(X)=\pi_k((X)). Thus HME_0(X)=\pi_0((X))=MCG^*(X) is the mapping class group In mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to sym ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mapping Class Group
In mathematics, in the subfield of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a certain discrete group corresponding to symmetries of the space. Motivation Consider a topological space, that is, a space with some notion of closeness between points in the space. We can consider the set of homeomorphisms from the space into itself, that is, continuous maps with continuous inverses: functions which stretch and deform the space continuously without breaking or gluing the space. This set of homeomorphisms can be thought of as a space itself. It forms a group under functional composition. We can also define a topology on this new space of homeomorphisms. The open sets of this new function space will be made up of sets of functions that map compact subsets ''K'' into open subsets ''U'' as ''K'' and ''U'' range throughout our original topological space, completed with their finite inters ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy Class
In topology, two continuous functions from one topological space to another are called homotopic (from and ) if one can be "continuously deformed" into the other, such a deformation being called a homotopy ( ; ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra. Formal definition Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the unit interval , 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the second parameter of ''H'' as time then ''H'' describes a ''continuous d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom (after T0 and T1), which is why Hausdorff ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Group
In the mathematics, mathematical field of algebraic topology, the fundamental group of a topological space is the group (mathematics), group of the equivalence classes under homotopy of the Loop (topology), loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have Group isomorphism, isomorphic fundamental groups. The fundamental group of a topological space X is denoted by \pi_1(X). Intuition Start with a space (for example, a surface (mathematics), surface), and some point in it, and all the loops both starting and ending at this point—path (topology), paths that start at this point, wander around and eventually return to the starting point. Two loops can be combined in an obvious way: travel along the first loop, then alo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Outer Automorphism Group
In mathematics, the outer automorphism group of a group, , is the quotient, , where is the automorphism group of and ) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted . If is trivial and has a trivial center, then is said to be complete. An automorphism of a group that is not inner is called an outer automorphism. The cosets of with respect to outer automorphisms are then the elements of ; this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups. If the inner automorphism group is trivial (when a group is abelian), the automorphism group and outer automorphism group are naturally identified; that is, the outer automorphism group does act on the group. For example, for the alternating group, , the outer automorphism group is usually the group of order 2, with exceptions noted below. Considering as a subgroup of the symmetric group, , conjugation by any odd permutation is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dehn-Nielsen Theorem
In mathematics, and more precisely in topology, the mapping class group of a Surface (topology), surface, sometimes called the modular group or Teichmüller modular group, is the group of homeomorphisms of the surface viewed up to continuous (in the compact-open topology) deformation. It is of fundamental importance for the study of 3-manifolds via their embedded surfaces and is also studied in algebraic geometry in relation to Moduli space, moduli problems for curves. The mapping class group can be defined for arbitrary manifolds (indeed, for arbitrary topological spaces) but the 2-dimensional setting is the most studied in group theory. The mapping class group of surfaces are related to various other groups, in particular braid groups and outer automorphism groups. History The mapping class group appeared in the first half of the twentieth century. Its origins lie in the study of the topology of hyperbolic surfaces, and especially in the study of the intersections of closed cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact-open Topology
In mathematics, the compact-open topology is a topology defined on the set of continuous maps between two topological spaces. The compact-open topology is one of the commonly used topologies on function spaces, and is applied in homotopy theory and functional analysis. It was introduced by Ralph Fox in 1945. If the codomain of the functions under consideration has a uniform structure or a metric structure then the compact-open topology is the "topology of uniform convergence on compact sets." That is to say, a sequence of functions converges in the compact-open topology precisely when it converges uniformly on every compact subset of the domain. Definition Let and be two topological spaces, and let denote the set of all continuous maps between and . Given a compact subset of and an open subset of , let denote the set of all functions such that In other words, V(K, U) = C(K, U) \times_ C(X, Y). Then the collection of all such is a subbase for the compact- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Topological Group
In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other. Topological groups were studied extensively in the period of 1925 to 1940. Haar and Weil (respectively in 1933 and 1940) showed that the integrals and Fourier series are special cases of a construct that can be defined on a very wide class of topological groups. Topological groups, along with continuous group actions, are used to study continuous symmetries, which have many applications, for example, in physics. In functional analysis, every topological vector space is an additive topological group with the additional property that scalar multiplication is continuous; consequently, many results from the theory of topological groups can be applied to functional anal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard Friederich Arens
Richard Friederich Arens (24 April 1919 – 3 May 2000) was an American mathematician. He was born in Iserlohn, Germany. He emigrated to the United States in 1925. Arens received his Ph.D. in 1945 from Harvard University. He was several times a visiting scholar at the Institute for Advanced Study (1945–46, 1946–47, and 1953–54). He was an Invited Speaker at the ICM in 1950 in Cambridge, Massachusetts.Arens, Richard F. "Operations induced in conjugate spaces." In Proc. Internat. Congr. of Math.(Cambridge, Mass., 1950), vol. 1, pp. 532–533. 1950. Arens worked in functional analysis, and was a professor at UCLA for more than 40 years. He served on the editorial board of the ''Pacific Journal of Mathematics'' for 14 years 1965–1979. There are three topological spaces named for Arens in the book ''Counterexamples in Topology'', including Arens–Fort space. Arens died in Los Angeles, California. See also * Arens square * Mackey–Arens theorem References ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Connected
In topology and other branches of mathematics, a topological space ''X'' is locally connected if every point admits a neighbourhood basis consisting of open connected sets. As a stronger notion, the space ''X'' is locally path connected if every point admits a neighbourhood basis consisting of open path connected sets. Background Throughout the history of topology, connectedness and compactness have been two of the most widely studied topological properties. Indeed, the study of these properties even among subsets of Euclidean space, and the recognition of their independence from the particular form of the Euclidean metric, played a large role in clarifying the notion of a topological property and thus a topological space. However, whereas the structure of ''compact'' subsets of Euclidean space was understood quite early on via the Heine–Borel theorem, ''connected'' subsets of \R^n (for ''n'' > 1) proved to be much more complicated. Indeed, while any compact Hausdorff sp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]