Hitbox Team
   HOME

TheInfoList



OR:

Collision detection is the
computational problem In theoretical computer science, a computational problem is a problem that may be solved by an algorithm. For example, the problem of factoring :"Given a positive integer ''n'', find a nontrivial prime factor of ''n''." is a computational probl ...
of detecting the
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their i ...
of two or more objects. Collision detection is a classic issue of
computational geometry Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems ar ...
and has applications in various computing fields, primarily in
computer graphics Computer graphics deals with generating images with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, cell phone and computer displays, and many specialized applications. A great de ...
,
computer game Video games, also known as computer games, are electronic games that involves interaction with a user interface or input device such as a joystick, game controller, controller, computer keyboard, keyboard, or motion sensing device to gener ...
s,
computer simulation Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be dete ...
s,
robotics Robotics is an interdisciplinary branch of computer science and engineering. Robotics involves design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrat ...
and
computational physics Computational physics is the study and implementation of numerical analysis to solve problems in physics for which a quantitative theory already exists. Historically, computational physics was the first application of modern computers in science, ...
. Collision detection
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specificat ...
s can be divided into operating on 2D and 3D objects.


Overview

In physical simulation, experiments such as playing
billiards Cue sports are a wide variety of games of skill played with a cue, which is used to strike billiard balls and thereby cause them to move around a cloth-covered table bounded by elastic bumpers known as . There are three major subdivisions of ...
, are conducted. The
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
of bouncing billiard balls are well understood, under the umbrella of
rigid body motion In physics, a rigid body (also known as a rigid object) is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external force ...
and
elastic collision In physics, an elastic collision is an encounter (collision) between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net conversion of kinetic energy into o ...
s. An initial description of the situation would be given, with a very precise physical description of the billiard table and balls, as well as initial positions of all the balls. Given a force applied to the cue ball (probably resulting from a player hitting the ball with their cue stick), we want to calculate the trajectories, precise motion and eventual resting places of all the balls with a
computer program A computer program is a sequence or set of instructions in a programming language for a computer to execute. Computer programs are one component of software, which also includes documentation and other intangible components. A computer program ...
. A program to simulate this game would consist of several portions, one of which would be responsible for calculating the precise impacts between the billiard balls. This particular example also turns out to be ill conditioned: a small error in any calculation will cause drastic changes in the final position of the billiard balls. Video games have similar requirements, with some crucial differences. While computer simulation needs to simulate real-world physics as precisely as possible, computer games need to simulate real-world physics in an ''acceptable'' way, in
real time Real-time or real time describes various operations in computing or other processes that must guarantee response times within a specified time (deadline), usually a relatively short time. A real-time process is generally one that happens in defined ...
and robustly. Compromises are allowed, so long as the resulting simulation is satisfying to the game players.


Collision detection in computer simulation

Physical simulators differ in the way they react on a collision. Some use the softness of the material to calculate a force, which will resolve the collision in the following time steps like it is in reality. Due to the low softness of some materials this is very CPU intensive. Some simulators estimate the time of collision by
linear interpolation In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points. Linear interpolation between two known points If the two known poin ...
, roll back the simulation, and calculate the collision by the more abstract methods of
conservation laws In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of energy, conservation of linear momentum, co ...
. Some iterate the linear interpolation (
Newton's method In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valu ...
) to calculate the time of collision with a much higher precision than the rest of the simulation. Collision detection utilizes time coherence to allow even finer time steps without much increasing CPU demand, such as in
air traffic control Air traffic control (ATC) is a service provided by ground-based air traffic controllers who direct aircraft on the ground and through a given section of controlled airspace, and can provide advisory services to aircraft in non-controlled airs ...
. After an inelastic collision, special states of sliding and resting can occur and, for example, the
Open Dynamics Engine The Open Dynamics Engine (ODE) is a physics engine written in C/C++. Its two main components are a rigid body dynamics simulation engine and a collision detection engine. It is free software licensed both under the BSD license and the LGPL. O ...
uses constraints to simulate them. Constraints avoid inertia and thus instability. Implementation of rest by means of a
scene graph Scene (from Greek σκηνή ''skēnḗ'') may refer to: Arts, entertainment, and media Music *Scene (subculture), a youth subculture from the early 2000s characterized by a distinct music and style. Groups and performers * The Scene who recor ...
avoids drift. In other words, physical simulators usually function one of two ways, where the collision is detected ''
a posteriori ("from the earlier") and ("from the later") are Latin phrases used in philosophy to distinguish types of knowledge, justification, or argument by their reliance on empirical evidence or experience. knowledge is independent from current ex ...
'' (after the collision occurs) or ''
a priori ("from the earlier") and ("from the later") are Latin phrases used in philosophy to distinguish types of knowledge, justification, or argument by their reliance on empirical evidence or experience. knowledge is independent from current ex ...
'' (before the collision occurs). In addition to the ''a posteriori'' and ''a priori'' distinction, almost all modern collision detection algorithms are broken into a hierarchy of algorithms. Often the terms "discrete" and "continuous" are used rather than ''a posteriori'' and ''a priori''.


''A posteriori'' (discrete) versus ''a priori'' (continuous)

In the ''a posteriori'' case, the physical simulation is advanced by a small step, then checked to see if any objects are intersecting or visibly considered intersecting. At each simulation step, a list of all intersecting bodies is created, and the positions and trajectories of these objects are "fixed" to account for the collision. This method is called ''a posteriori'' because it typically misses the actual instant of collision, and only catches the collision after it has actually happened. In the ''a priori'' methods, there is a collision detection algorithm which will be able to predict very precisely the trajectories of the physical bodies. The instants of collision are calculated with high precision, and the physical bodies never actually interpenetrate. This is called ''a priori'' because the collision detection algorithm calculates the instants of collision before it updates the configuration of the physical bodies. The main benefits of the ''a posteriori'' methods are as follows. In this case, the collision detection algorithm need not be aware of the myriad of physical variables; a simple list of physical bodies is fed to the algorithm, and the program returns a list of intersecting bodies. The collision detection algorithm doesn't need to understand friction, elastic collisions, or worse, nonelastic collisions and deformable bodies. In addition, the ''a posteriori'' algorithms are in effect one dimension simpler than the ''a priori'' algorithms. An ''a priori'' algorithm must deal with the time variable, which is absent from the ''a posteriori'' problem. On the other hand, ''a posteriori'' algorithms cause problems in the "fixing" step, where intersections (which aren't physically correct) need to be corrected. Moreover, if the discrete step is too large, the collision could go undetected, resulting in an object which passes through another if it is sufficiently fast or small. The benefits of the ''a priori'' algorithms are increased fidelity and stability. It is difficult (but not completely impossible) to separate the physical simulation from the collision detection algorithm. However, in all but the simplest cases, the problem of determining ahead of time when two bodies will collide (given some initial data) has no closed form solution—a numerical root finder is usually involved. Some objects are in ''resting contact'', that is, in collision, but neither bouncing off, nor interpenetrating, such as a vase resting on a table. In all cases, resting contact requires special treatment: If two objects collide (''a posteriori'') or slide (''a priori'') and their relative motion is below a threshold, friction becomes
stiction Stiction is the static friction that needs to be overcome to enable relative motion of stationary objects in contact. The term is a portmanteau of the words ''static'' and ''friction'', and is perhaps also influenced by the verb '' to stick''. Any ...
and both objects are arranged in the same branch of the
scene graph Scene (from Greek σκηνή ''skēnḗ'') may refer to: Arts, entertainment, and media Music *Scene (subculture), a youth subculture from the early 2000s characterized by a distinct music and style. Groups and performers * The Scene who recor ...
.


Optimization

The obvious approaches to collision detection for multiple objects are very slow. Checking every object against every other object will, of course, work, but is too inefficient to be used when the number of objects is at all large. Checking objects with complex geometry against each other in the obvious way, by checking each face against each other face, is itself quite slow. Thus, considerable research has been applied to speed up the problem.


Exploiting temporal coherence

In many applications, the configuration of physical bodies from one time step to the next changes very little. Many of the objects may not move at all. Algorithms have been designed so that the calculations done in a preceding time step can be reused in the current time step, resulting in faster completion of the calculation. At the coarse level of collision detection, the objective is to find pairs of objects which might potentially intersect. Those pairs will require further analysis. An early high performance algorithm for this was developed by
Ming C. Lin Ming C. Lin is an American computer scientist and a former chair of the Department of Computer Science at the University of Maryland, College Park, where she also holds an endowed faculty position as the Elizabeth Stevinson Iribe Chair of Compute ...
at the
University of California, Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California) is a public land-grant research university in Berkeley, California. Established in 1868 as the University of California, it is the state's first land-grant u ...
br>
who suggested using
axis-aligned bounding box In geometry, the minimum or smallest bounding or enclosing box for a point set in dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie. When other kinds of measure a ...
es for all ''n'' bodies in the scene. Each box is represented by the product of three intervals (i.e., a box would be I_1 \times I_2 \times I_3= _1,b_1\times _2,b_2\times _3,b_3/math>). A common algorithm for collision detection of bounding boxes is
sweep and prune In physical simulations, sweep and prune is a broad phase algorithm used during collision detection to limit the number of pairs of solids that need to be checked for collision, i.e. intersection. This is achieved by sorting the starts (lower bound ...
. Observe that two such boxes, I_1 \times I_2 \times I_3 and J_1 \times J_2 \times J_3 intersect
if, and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bicondi ...
, I_1 intersects J_1, I_2 intersects J_2 and I_3 intersects J_3. It is supposed that, from one time step to the next, I_k and J_k intersect, then it is very likely that at the next time step they will still intersect. Likewise, if they did not intersect in the previous time step, then they are very likely to continue not to. So we reduce the problem to that of tracking, from frame to frame, which intervals do intersect. We have three lists of intervals (one for each axis) and all lists are the same length (since each list has length n, the number of bounding boxes.) In each list, each interval is allowed to intersect all other intervals in the list. So for each list, we will have an n \times n
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
M=(m_) of zeroes and ones: m_ is 1 if intervals i and j intersect, and 0 if they do not intersect. By our assumption, the matrix M associated to a list of intervals will remain essentially unchanged from one time step to the next. To exploit this, the list of intervals is actually maintained as a list of labeled endpoints. Each element of the list has the coordinate of an endpoint of an interval, as well as a unique integer identifying that interval. Then, we
sort Sort may refer to: * Sorting, any process of arranging items in sequence or in sets ** Sorting algorithm, any algorithm for arranging elements in lists ** Sort (Unix), a Unix utility which sorts the lines of a file ** Sort (C++), a function in the ...
the list by coordinates, and update the matrix M as we go. It's not so hard to believe that this algorithm will work relatively quickly if indeed the configuration of bounding boxes does not change significantly from one time step to the next. In the case of deformable bodies such as cloth simulation, it may not be possible to use a more specific pairwise pruning algorithm as discussed below, and an ''n''-body pruning algorithm is the best that can be done. If an upper bound can be placed on the velocity of the physical bodies in a scene, then pairs of objects can be pruned based on their initial distance and the size of the time step.


Pairwise pruning

Once we've selected a pair of physical bodies for further investigation, we need to check for collisions more carefully. However, in many applications, individual objects (if they are not too deformable) are described by a set of smaller primitives, mainly triangles. So now, we have two sets of triangles, S= and T= (for simplicity, we will assume that each set has the same number of triangles.) The obvious thing to do is to check all triangles S_j against all triangles T_k for collisions, but this involves n^2 comparisons, which is highly inefficient. If possible, it is desirable to use a pruning algorithm to reduce the number of pairs of triangles we need to check. The most widely used family of algorithms is known as the ''hierarchical bounding volumes'' method. As a preprocessing step, for each object (in our example, S and T) we will calculate a hierarchy of bounding volumes. Then, at each time step, when we need to check for collisions between S and T, the hierarchical bounding volumes are used to reduce the number of pairs of triangles under consideration. For simplicity, we will give an example using bounding spheres, although it has been noted that spheres are undesirable in many cases. If E is a set of triangles, we can precalculate a bounding sphere B(E). There are many ways of choosing B(E), we only assume that B(E) is a sphere that completely contains E and is as small as possible. Ahead of time, we can compute B(S) and B(T). Clearly, if these two spheres do not intersect (and that is very easy to test), then neither do S and T. This is not much better than an ''n''-body pruning algorithm, however. If E= is a set of triangles, then we can split it into two halves L(E):= and R(E):=. We can do this to S and T, and we can calculate (ahead of time) the bounding spheres B(L(S)),B(R(S)) and B(L(T)),B(R(T)). The hope here is that these bounding spheres are much smaller than B(S) and B(T). And, if, for instance, B(S) and B(L(T)) do not intersect, then there is no sense in checking any triangle in S against any triangle in L(T). As a
precomputation In algorithms, precomputation is the act of performing an initial computation before run time to generate a lookup table that can be used by an algorithm to avoid repeated computation each time it is executed. Precomputation is often used in algo ...
, we can take each physical body (represented by a set of triangles) and recursively decompose it into a
binary tree In computer science, a binary tree is a k-ary k = 2 tree data structure in which each node has at most two children, which are referred to as the ' and the '. A recursive definition using just set theory notions is that a (non-empty) binary t ...
, where each node N represents a set of triangles, and its two children represent L(N) and R(N). At each node in the tree, we can precompute the bounding sphere B(N). When the time comes for testing a pair of objects for collision, their bounding sphere tree can be used to eliminate many pairs of triangles. Many variants of the algorithms are obtained by choosing something other than a sphere for B(T). If one chooses
axis-aligned bounding box In geometry, the minimum or smallest bounding or enclosing box for a point set in dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie. When other kinds of measure a ...
es, one gets AABBTrees.
Oriented bounding box In geometry, the minimum or smallest bounding or enclosing box for a point set in dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie. When other kinds of measure ...
trees are called OBBTrees. Some trees are easier to update if the underlying object changes. Some trees can accommodate higher order primitives such as splines instead of simple triangles.


Exact pairwise collision detection

Once we're done pruning, we are left with a number of candidate pairs to check for exact collision detection. A basic observation is that for any two
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytope ...
objects which are disjoint, one can find a plane in space so that one object lies completely on one side of that plane, and the other object lies on the opposite side of that plane. This allows the development of very fast collision detection algorithms for convex objects. Early work in this area involved " separating plane" methods. Two triangles collide essentially only when they can not be separated by a plane going through three vertices. That is, if the triangles are and where each v_j is a vector in \mathbb R^3, then we can take three vertices, v_i,v_j,v_k, find a plane going through all three vertices, and check to see if this is a separating plane. If any such plane is a separating plane, then the triangles are deemed to be disjoint. On the other hand, if none of these planes are separating planes, then the triangles are deemed to intersect. There are twenty such planes. If the triangles are coplanar, this test is not entirely successful. One can add some extra planes, for instance, planes that are
normal Normal(s) or The Normal(s) may refer to: Film and television * ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson * ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie * ''Norma ...
to triangle edges, to fix the problem entirely. In other cases, objects that meet at a flat face must necessarily also meet at an angle elsewhere, hence the overall collision detection will be able to find the collision. Better methods have since been developed. Very fast algorithms are available for finding the closest points on the surface of two convex polyhedral objects. Early work by
Ming C. Lin Ming C. Lin is an American computer scientist and a former chair of the Department of Computer Science at the University of Maryland, College Park, where she also holds an endowed faculty position as the Elizabeth Stevinson Iribe Chair of Compute ...
used a variation on the
simplex algorithm In mathematical optimization, Dantzig's simplex algorithm (or simplex method) is a popular algorithm for linear programming. The name of the algorithm is derived from the concept of a simplex and was suggested by T. S. Motzkin. Simplices are n ...
from
linear programming Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear function#As a polynomial function, li ...
. The Gilbert-Johnson-Keerthi distance algorithm has superseded that approach. These algorithms approach constant time when applied repeatedly to pairs of stationary or slow-moving objects, when used with starting points from the previous collision check. The end result of all this algorithmic work is that collision detection can be done efficiently for thousands of moving objects in real time on typical personal computers and game consoles.


A priori pruning

Where most of the objects involved are fixed, as is typical of video games, a priori methods using precomputation can be used to speed up execution. Pruning is also desirable here, both ''n''-body pruning and pairwise pruning, but the algorithms must take time and the types of motions used in the underlying physical system into consideration. When it comes to the exact pairwise collision detection, this is highly trajectory dependent, and one almost has to use a numerical
root-finding algorithm In mathematics and computing, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function , from the real numbers to real numbers or from the complex numbers to the complex numbers ...
to compute the instant of impact. As an example, consider two triangles moving in time and . At any point in time, the two triangles can be checked for intersection using the twenty planes previously mentioned. However, we can do better, since these twenty planes can all be tracked in time. If P(u,v,w) is the plane going through points u,v,w in \mathbb R^3 then there are twenty planes P(v_i(t),v_j(t),v_k(t)) to track. Each plane needs to be tracked against three vertices, this gives sixty values to track. Using a root finder on these sixty functions produces the exact collision times for the two given triangles and the two given trajectory. We note here that if the trajectories of the vertices are assumed to be linear polynomials in t then the final sixty functions are in fact cubic polynomials, and in this exceptional case, it is possible to locate the exact collision time using the formula for the roots of the cubic. Some numerical analysts suggest that using the formula for the roots of the cubic is not as numerically stable as using a root finder for polynomials.


Spatial partitioning

Alternative algorithms are grouped under the spatial partitioning umbrella, which includes
octree An octree is a tree data structure in which each internal node has exactly eight children. Octrees are most often used to partition a three-dimensional space by recursively subdividing it into eight octants. Octrees are the three-dimensional anal ...
s,
binary space partitioning In computer science, binary space partitioning (BSP) is a method for space partitioning which recursively subdivides a Euclidean space into two convex sets by using hyperplanes as partitions. This process of subdividing gives rise to a represent ...
(or BSP trees) and other, similar approaches. If one splits space into a number of simple cells, and if two objects can be shown not to be in the same cell, then they need not be checked for intersection. Since BSP trees can be precomputed, that approach is well suited to handling walls and fixed obstacles in games. These algorithms are generally older than the algorithms described above.


Bounding boxes

Bounding box In geometry, the minimum or smallest bounding or enclosing box for a point set in dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie. When other kinds of measure a ...
es (or
bounding volume In computer graphics and computational geometry, a bounding volume for a set of objects is a closed volume that completely contains the union of the objects in the set. Bounding volumes are used to improve the efficiency of geometrical operatio ...
s) are most often a 2D rectangle or 3D
cuboid In geometry, a cuboid is a hexahedron, a six-faced solid. Its faces are quadrilaterals. Cuboid means "like a cube", in the sense that by adjusting the length of the edges or the angles between edges and faces a cuboid can be transformed into a cub ...
, but other shapes are possible. A bounding box in a video game is sometimes called a
Hitbox Collision detection is the computational problem of detecting the intersection of two or more objects. Collision detection is a classic issue of computational geometry and has applications in various computing fields, primarily in computer grap ...
. The bounding diamond, the minimum bounding parallelogram, the convex hull, the bounding circle or bounding ball, and the bounding ellipse have all been tried, but bounding boxes remain the most popular due to their simplicity. Bounding boxes are typically used in the early (pruning) stage of collision detection, so that only objects with overlapping bounding boxes need be compared in detail.


Triangle centroid segments

A
triangle mesh In computer graphics, a triangle mesh is a type of polygon mesh. It comprises a set of triangles (typically in three dimensions) that are connected by their common edges or vertices. Many graphics software packages and hardware devices can ...
object is commonly used in 3D body modeling. Normally the collision function is a triangle to triangle intercept or a bounding shape associated with the mesh. A triangle centroid is a center of mass location such that it would balance on a pencil tip. The simulation need only add a centroid dimension to the physics parameters. Given centroid points in both object and target it is possible to define the line segment connecting these two points. The position vector of the centroid of a triangle is the average of the position vectors of its vertices. So if its vertices have Cartesian coordinates (x_1,y_1,z_1), (x_2,y_2,z_2) and (x_3,y_3,z_3) then the centroid is \left(\frac,\frac,\frac\right). Here is the function for a line segment distance between two 3D points. \mathrm = \sqrt Here the length/distance of the segment is an adjustable "hit" criteria size of segment. As the objects approach the length decreases to the threshold value. A triangle sphere becomes the effective geometry test. A sphere centered at the centroid can be sized to encompass all the triangle's vertices.


Video games

Video games have to split their very limited computing time between several tasks. Despite this resource limit, and the use of relatively primitive collision detection algorithms, programmers have been able to create believable, if inexact, systems for use in games . For a long time, video games had a very limited number of objects to treat, and so checking all pairs was not a problem. In two-dimensional games, in some cases, the hardware was able to efficiently detect and report overlapping pixels between sprites on the screen. In other cases, simply tiling the screen and binding each ''sprite'' into the tiles it overlaps provides sufficient pruning, and for pairwise checks, bounding rectangles or circles called
hitbox Collision detection is the computational problem of detecting the intersection of two or more objects. Collision detection is a classic issue of computational geometry and has applications in various computing fields, primarily in computer grap ...
es are used and deemed sufficiently accurate. Three-dimensional games have used spatial partitioning methods for n-body pruning, and for a long time used one or a few spheres per actual 3D object for pairwise checks. Exact checks are very rare, except in games attempting to
simulate A simulation is the imitation of the operation of a real-world process or system over time. Simulations require the use of Conceptual model, models; the model represents the key characteristics or behaviors of the selected system or proc ...
reality closely. Even then, exact checks are not necessarily used in all cases. Because games do not need to mimic actual physics, stability is not as much of an issue. Almost all games use ''a posteriori'' collision detection, and collisions are often resolved using very simple rules. For instance, if a character becomes embedded in a wall, they might be simply moved back to their last known good location. Some games will calculate the distance the character can move before getting embedded into a wall, and only allow them to move that far. In many cases for video games, approximating the characters by a point is sufficient for the purpose of collision detection with the environment. In this case,
binary space partition In computer science, binary space partitioning (BSP) is a method for space partitioning which recursively subdivides a Euclidean space into two convex sets by using hyperplanes as partitions. This process of subdividing gives rise to a represent ...
ing trees provide a viable, efficient and simple algorithm for checking if a point is embedded in the scenery or not. Such a data structure can also be used to handle "resting position" situation gracefully when a character is running along the ground. Collisions between characters, and collisions with projectiles and hazards, are treated separately. A robust simulator is one that will react to any input in a reasonable way. For instance, if we imagine a high speed racecar video game, from one simulation step to the next, it is conceivable that the cars would advance a substantial distance along the race track. If there is a shallow obstacle on the track (such as a brick wall), it is not entirely unlikely that the car will completely leap over it, and this is very undesirable. In other instances, the "fixing" that posteriori algorithms require isn't implemented correctly, resulting in bugs that can trap characters in walls or allow them to pass through them and fall into an endless void where there may or may not be a deadly bottomless pit, sometimes referred to as "black hell", "blue hell", or "green hell", depending on the predominant color. These are the hallmarks of a failing collision detection and physical simulation system. '' Big Rigs: Over the Road Racing'' is an infamous example of a game with a failing or possibly missing collision detection system.


Hitbox

A hitbox is an invisible shape commonly used in
video game Video games, also known as computer games, are electronic games that involves interaction with a user interface or input device such as a joystick, controller, keyboard, or motion sensing device to generate visual feedback. This fee ...
s for real-time collision detection; it is a type of bounding box. It is often a rectangle (in 2D games) or
cuboid In geometry, a cuboid is a hexahedron, a six-faced solid. Its faces are quadrilaterals. Cuboid means "like a cube", in the sense that by adjusting the length of the edges or the angles between edges and faces a cuboid can be transformed into a cub ...
(in 3D) that is attached to and follows a point on a visible object (such as a model or a sprite). Circular or spheroidial shapes are also common, though they are still most often called "boxes". It is common for animated objects to have hitboxes attached to each moving part to ensure accuracy during motion. Hitboxes are used to detect "one-way" collisions such as a character being hit by a punch or a bullet. They are unsuitable for the detection of collisions with feedback (e.g. bumping into a wall) due to the difficulty experienced by both humans and AI in managing a hitbox's ever-changing locations; these sorts of collisions are typically handled with much simpler
axis-aligned bounding box In geometry, the minimum or smallest bounding or enclosing box for a point set in dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie. When other kinds of measure a ...
es instead. Players may use the term "hitbox" to refer to these types of interactions regardless. A hurtbox is a related term, used to differentiate "object that deals damage" from "object that receives damage". For example, an attack may only land if the hitbox around an attacker's punch connects with one of the opponent's hurtboxes on their body, while opposing hitboxes colliding may result in the players trading or cancelling blows, and opposing hurtboxes do not interact with each other. The term is not standardized across the industry; some games reverse their definitions of "hitbox" and "hurtbox", while others only use "hitbox" for both sides.


See also

*
Hit-testing In computer graphics programming, hit-testing (hit detection, picking, or pick correlation ) is the process of determining whether a user-controlled cursor (such as a mouse cursor or touch-point on a touch-screen interface) intersects a given graphi ...
*
Bounding volume In computer graphics and computational geometry, a bounding volume for a set of objects is a closed volume that completely contains the union of the objects in the set. Bounding volumes are used to improve the efficiency of geometrical operatio ...
*
Game physics Computer animation physics or game physics are laws of physics as they are defined within a simulation or video game, and the programming logic used to implement these laws. Game physics vary greatly in their degree of similarity to real-world phy ...
*
Gilbert–Johnson–Keerthi distance algorithm The Gilbert–Johnson–Keerthi distance algorithm is a method of determining the minimum distance between two convex sets. Unlike many other distance algorithms, it does not require that the geometry data be stored in any specific format, but inst ...
*
Minkowski Portal Refinement The Minkowski Portal Refinement collision detection algorithm is a technique for determining whether two convex shapes overlap. The algorithm was created by Gary Snethen in 2006 and was first published in Game Programming Gems 7. The algorithm ...
*
Physics engine A physics engine is computer software that provides an approximate simulation of certain physical systems, such as rigid body dynamics (including collision detection), soft body dynamics, and fluid dynamics, of use in the domains of computer gr ...
*
Lubachevsky–Stillinger algorithm Lubachevsky-Stillinger (compression) algorithm (LS algorithm, LSA, or LS protocol) is a numerical procedure suggested by F. H. Stillinger and B.D. Lubachevsky that simulates or imitates a physical process of compressing an assembly of hard particl ...
*
Ragdoll physics Ragdoll physics is a type of procedural animation used by physics engines, which is often used as a replacement for traditional static death animations in video games and animated films. As computers increased in power, it became possible to do ...


References


External links


University of North Carolina at Chapel Hill collision detection research web site

Prof. Steven Cameron (Oxford University) web site on collision detection

How to Avoid a Collision
by George Beck,
Wolfram Demonstrations Project The Wolfram Demonstrations Project is an organized, open-source collection of small (or medium-size) interactive programs called Demonstrations, which are meant to visually and interactively represent ideas from a range of fields. It is hos ...
.
Bounding boxes and their usage




{{DEFAULTSORT:Collision Detection Computational geometry Computer graphics Video game development Robotics Computer physics engines