Minkowski Portal Refinement
   HOME
*



picture info

Minkowski Portal Refinement
The Minkowski Portal Refinement collision detection algorithm is a technique for determining whether two convex shapes overlap. The algorithm was created by Gary Snethen in 2006 and was first published in Game Programming Gems 7. The algorithm was used in Tomb Raider: Underworld and other games created by Crystal Dynamics and its sister studios within Eidos Interactive. MPR, like its cousin GJK, relies on shapes that are defined using support mappings. This allows the algorithm to support a limitless variety of shapes that are problematic for other algorithms. Support mappings require only a single mathematical function to represent a point, line segment, disc, cylinder, cone, ellipsoid, football, bullet, frustum or most any other common convex shape. Once a set of basic primitives have been created, they can easily be combined with one another using operations such as sweep, shrink-wrap and affine transformation In Euclidean geometry, an affine transformation or affinit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




XenoCollide
The Minkowski Portal Refinement collision detection algorithm is a technique for determining whether two convex shapes overlap. The algorithm was created by Gary Snethen in 2006 and was first published in Game Programming Gems 7. The algorithm was used in Tomb Raider: Underworld and other games created by Crystal Dynamics and its sister studios within Eidos Interactive. MPR, like its cousin GJK, relies on shapes that are defined using support mappings. This allows the algorithm to support a limitless variety of shapes that are problematic for other algorithms. Support mappings require only a single mathematical function to represent a point, line segment, disc, cylinder, cone, ellipsoid, football, bullet, frustum or most any other common convex shape. Once a set of basic primitives have been created, they can easily be combined with one another using operations such as sweep, shrink-wrap and affine transformation In Euclidean geometry, an affine transformation or affinit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Collision Detection
Collision detection is the computational problem of detecting the intersection (Euclidean geometry), intersection of two or more objects. Collision detection is a classic issue of computational geometry and has applications in various computing fields, primarily in computer graphics, computer games, computer simulations, robotics and computational physics. Collision detection algorithms can be divided into operating on 2D and 3D objects. Overview In physical simulation, experiments such as playing billiards, are conducted. The physics of bouncing billiard balls are well understood, under the umbrella of rigid body motion and elastic collisions. An initial description of the situation would be given, with a very precise physical description of the billiard table and balls, as well as initial positions of all the balls. Given a force applied to the cue ball (probably resulting from a player hitting the ball with their cue stick), we want to calculate the trajectories, precise ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a Heuristic (computer science), heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gary Snethen
Gary may refer to: *Gary (given name), a common masculine given name, including a list of people and fictional characters with the name *Gary, Indiana, the largest city named Gary Places ;Iran *Gary, Iran, Sistan and Baluchestan Province ;United States *Gary (Tampa), Florida * Gary, Maryland *Gary, Minnesota *Gary, South Dakota *Gary, West Virginia *Gary – New Duluth, a neighborhood in Duluth, Minnesota *Gary Air Force Base, San Marcos, Texas * Gary City, Texas Ships * USS ''Gary'' (DE-61), a destroyer escort launched in 1943 * USS ''Gary'' (CL-147), scheduled to be a light cruiser, but canceled prior to construction in 1945 * USS ''Gary'' (FFG-51), a frigate, commissioned in 1984 * USS ''Thomas J. Gary'' (DE-326), a destroyer escort commissioned in 1943 People and fictional characters *Gary (surname), including a list of people with the name *Gary (rapper), South Korean rapper and entertainer *Gary (Argentine singer), Argentine singer of cuarteto songs Other uses *'' Gary: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Crystal Dynamics
Crystal Dynamics, Inc. is an American video game developer based in San Mateo, California and part of Embracer Group. The studio developed the '' Gex'', ''Legacy of Kain'', and ''Tomb Raider'' series. Founded in 1992 by Madeline Canepa, Judy Lange, and Dave Morse, it was acquired by Eidos Interactive in 1998. It became part of SCi Entertainment in 2005, Square Enix Europe in 2009 and CDE Entertainment in 2022. History Background and early years (1989–1994) Crystal Dynamics was founded by Madeline Canepa, Judy Lange, and Dave Morse. Morse, a founder of Amiga Corporation, had previously founded New Technology Group with Dave Needle and Robert J. Mical in 1989 to create a video game console that could succeed those by Nintendo and Sega. In 1990, New Technology Group's founders discussed this idea with Trip Hawkins, the chief executive officer (CEO) of Electronic Arts, who shared with them his vision for such a system. The two companies signed an agreement in September 19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eidos Interactive
Square Enix Limited (formerly Domark Limited and Eidos Interactive Limited) is a British subsidiary of the Japanese video game company Square Enix, acting as their European publishing arm. The company formerly owned ''Tomb Raider'', which was in development under CentreGold in 1996, and had acquired Crystal Dynamics in 1998, among numerous other assets, until 2022. Square Enix Limited and fellow group company Square Enix Incorporated shared "Phil" Rogers as CEO and other executives from 2013 to 2022. The company was founded as Domark in 1984 by Mark Strachan and Dominic Wheatley. In 1995, it was acquired by Eidos plc and merged with Simis and Big Red Software to create the subsidiary Eidos Interactive the following year. Ian Livingstone, who held a stake in Domark, became deputy chairman of Eidos and stayed in various roles, until his departure from the company in 2013. In 2005, Eidos plc was in turn acquired by British games publisher SCi. The combined company, SCi Entertainmen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Support (mathematics)
In mathematics, the support of a real-valued function f is the subset of the function domain containing the elements which are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used very widely in mathematical analysis. Formulation Suppose that f : X \to \R is a real-valued function whose domain is an arbitrary set X. The of f, written \operatorname(f), is the set of points in X where f is non-zero: \operatorname(f) = \. The support of f is the smallest subset of X with the property that f is zero on the subset's complement. If f(x) = 0 for all but a finite number of points x \in X, then f is said to have . If the set X has an additional structure (for example, a topology), then the support of f is defined in an analogous way as the smallest subset of X of an appropriate type such that f vanishes in an appropriate sense on its complement. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Transformation
In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, an affine transformation is an automorphism of an affine space (Euclidean spaces are specific affine spaces), that is, a function which maps an affine space onto itself while preserving both the dimension of any affine subspaces (meaning that it sends points to points, lines to lines, planes to planes, and so on) and the ratios of the lengths of parallel line segments. Consequently, sets of parallel affine subspaces remain parallel after an affine transformation. An affine transformation does not necessarily preserve angles between lines or distances between points, though it does preserve ratios of distances between points lying on a straight line. If is the point set of an affine space, then every affine transformation on can be repre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometric Algorithms
The following is a list of well-known algorithms along with one-line descriptions for each. Automated planning Combinatorial algorithms General combinatorial algorithms * Brent's algorithm: finds a cycle in function value iterations using only two iterators * Floyd's cycle-finding algorithm: finds a cycle in function value iterations * Gale–Shapley algorithm: solves the stable marriage problem * Pseudorandom number generators (uniformly distributed—see also List of pseudorandom number generators for other PRNGs with varying degrees of convergence and varying statistical quality): ** ACORN generator ** Blum Blum Shub ** Lagged Fibonacci generator ** Linear congruential generator ** Mersenne Twister Graph algorithms * Coloring algorithm: Graph coloring algorithm. * Hopcroft–Karp algorithm: convert a bipartite graph to a maximum cardinality matching * Hungarian algorithm: algorithm for finding a perfect matching * Prüfer coding: conversion between a labeled tree and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]