HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. There are several different notations used to represent different kinds of inequalities: * The notation ''a'' < ''b'' means that ''a'' is less than ''b''. * The notation ''a'' > ''b'' means that ''a'' is greater than ''b''. In either case, ''a'' is not equal to ''b''. These relations are known as strict inequalities, meaning that ''a'' is strictly less than or strictly greater than ''b''. Equivalence is excluded. In contrast to strict inequalities, there are two types of inequality relations that are not strict: * The notation ''a'' ≤ ''b'' or ''a'' ⩽ ''b'' means that ''a'' is less than or equal to ''b'' (or, equivalently, at most ''b'', or not greater than ''b''). * The notation ''a'' ≥ ''b'' or ''a'' ⩾ ''b'' means that ''a'' is greater than or equal to ''b'' (or, equivalently, at least ''b'', or not less than ''b''). The relation not greater than can also be represented by ''a'' ≯ ''b'', the symbol for "greater than" bisected by a slash, "not". The same is true for not less than and ''a'' ≮ ''b''. The notation ''a'' ≠ ''b'' means that ''a'' is not equal to ''b''; this '' inequation'' sometimes is considered a form of strict inequality. It does not say that one is greater than the other; it does not even require ''a'' and ''b'' to be member of an ordered set. In engineering sciences, less formal use of the notation is to state that one quantity is "much greater" than another, normally by several orders of magnitude. * The notation ''a'' ≪ ''b'' means that ''a'' is much less than ''b''. * The notation ''a'' ≫ ''b'' means that ''a'' is much greater than ''b''. This implies that the lesser value can be neglected with little effect on the accuracy of an
approximation An approximation is anything that is intentionally similar but not exactly equality (mathematics), equal to something else. Etymology and usage The word ''approximation'' is derived from Latin ''approximatus'', from ''proximus'' meaning ''very ...
(such as the case of ultrarelativistic limit in physics). In all of the cases above, any two symbols mirroring each other are symmetrical; ''a'' < ''b'' and ''b'' > ''a'' are equivalent, etc.


Properties on the number line

Inequalities are governed by the following properties. All of these properties also hold if all of the non-strict inequalities (≤ and ≥) are replaced by their corresponding strict inequalities (< and >) and — in the case of applying a function — monotonic functions are limited to ''strictly'' monotonic functions.


Converse

The relations ≤ and ≥ are each other's converse, meaning that for any real numbers ''a'' and ''b'':


Transitivity

The transitive property of inequality states that for any real numbers ''a'', ''b'', ''c'': If ''either'' of the premises is a strict inequality, then the conclusion is a strict inequality:


Addition and subtraction

A common constant ''c'' may be added to or subtracted from both sides of an inequality. So, for any real numbers ''a'', ''b'', ''c'': In other words, the inequality relation is preserved under addition (or subtraction) and the real numbers are an ordered group under addition.


Multiplication and division

The properties that deal with
multiplication Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being additi ...
and division state that for any real numbers, ''a'', ''b'' and non-zero ''c'': In other words, the inequality relation is preserved under multiplication and division with positive constant, but is reversed when a negative constant is involved. More generally, this applies for an ordered field. For more information, see '' § Ordered fields''.


Additive inverse

The property for the
additive inverse In mathematics, the additive inverse of a number is the number that, when added to , yields zero. This number is also known as the opposite (number), sign change, and negation. For a real number, it reverses its sign: the additive inverse (opp ...
states that for any real numbers ''a'' and ''b'':


Multiplicative inverse

If both numbers are positive, then the inequality relation between the multiplicative inverses is opposite of that between the original numbers. More specifically, for any non-zero real numbers ''a'' and ''b'' that are both positive (or both negative): All of the cases for the signs of ''a'' and ''b'' can also be written in
chained notation Chained may refer to: * ''Chained'' (1934 film), starring Joan Crawford and Clark Gable * ''Chained'' (2012 film), a Canadian film directed by Jennifer Lynch * ''Chained'' (2020 film), a Canadian film directed by Titus Heckel * ''Chained'', a 2 ...
, as follows:


Applying a function to both sides

Any monotonically increasing function, by its definition, may be applied to both sides of an inequality without breaking the inequality relation (provided that both expressions are in the domain of that function). However, applying a monotonically decreasing function to both sides of an inequality means the inequality relation would be reversed. The rules for the additive inverse, and the multiplicative inverse for positive numbers, are both examples of applying a monotonically decreasing function. If the inequality is strict (''a'' < ''b'', ''a'' > ''b'') ''and'' the function is strictly monotonic, then the inequality remains strict. If only one of these conditions is strict, then the resultant inequality is non-strict. In fact, the rules for additive and multiplicative inverses are both examples of applying a ''strictly'' monotonically decreasing function. A few examples of this rule are: * Raising both sides of an inequality to a power ''n'' > 0 (equiv., −''n'' < 0), when ''a'' and ''b'' are positive real numbers: * Taking the
natural logarithm The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
on both sides of an inequality, when ''a'' and ''b'' are positive real numbers: (this is true because the natural logarithm is a strictly increasing function.)


Formal definitions and generalizations

A (non-strict) partial order is a
binary relation In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of ele ...
≤ over a set ''P'' which is reflexive, antisymmetric, and transitive. That is, for all ''a'', ''b'', and ''c'' in ''P'', it must satisfy the three following clauses: # ''a'' ≤ ''a'' ( reflexivity) # if ''a'' ≤ ''b'' and ''b'' ≤ ''a'', then ''a'' = ''b'' ( antisymmetry) # if ''a'' ≤ ''b'' and ''b'' ≤ ''c'', then ''a'' ≤ ''c'' ( transitivity) A set with a partial order is called a partially ordered set. Those are the very basic axioms that every kind of order has to satisfy. Other axioms that exist for other definitions of orders on a set ''P'' include: # For every ''a'' and ''b'' in ''P'', ''a'' ≤ ''b'' or ''b'' ≤ ''a'' ( total order). # For all ''a'' and ''b'' in ''P'' for which ''a'' < ''b'', there is a ''c'' in ''P'' such that ''a'' < ''c'' < ''b'' (
dense order In mathematics, a partial order or total order < on a X is said to be dense if, for all x
). # Every non-empty
subset In mathematics, Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are ...
of ''P'' with an upper bound has a ''least'' upper bound (supremum) in ''P'' ( least-upper-bound property).


Ordered fields

If (''F'', +, ×) is a field and ≤ is a total order on ''F'', then (''F'', +, ×, ≤) is called an ordered field if and only if: * ''a'' ≤ ''b'' implies ''a'' + ''c'' ≤ ''b'' + ''c''; * 0 ≤ ''a'' and 0 ≤ ''b'' implies 0 ≤ ''a'' × ''b''. Both (Q, +, ×, ≤) and (R, +, ×, ≤) are ordered fields, but ≤ cannot be defined in order to make (C, +, ×, ≤) an ordered field, because −1 is the square of ''i'' and would therefore be positive. Besides from being an ordered field, R also has the Least-upper-bound property. In fact, R can be defined as the only ordered field with that quality.


Chained notation

The notation ''a'' < ''b'' < ''c'' stands for "''a'' < ''b'' and ''b'' < ''c''", from which, by the transitivity property above, it also follows that ''a'' < ''c''. By the above laws, one can add or subtract the same number to all three terms, or multiply or divide all three terms by same nonzero number and reverse all inequalities if that number is negative. Hence, for example, ''a'' < ''b'' + ''e'' < ''c'' is equivalent to ''a'' − ''e'' < ''b'' < ''c'' − ''e''. This notation can be generalized to any number of terms: for instance, ''a''1 ≤ ''a''2 ≤ ... ≤ ''a''''n'' means that ''a''''i'' ≤ ''a''''i''+1 for ''i'' = 1, 2, ..., ''n'' − 1. By transitivity, this condition is equivalent to ''a''''i'' ≤ ''a''''j'' for any 1 ≤ ''i'' ≤ ''j'' ≤ ''n''. When solving inequalities using chained notation, it is possible and sometimes necessary to evaluate the terms independently. For instance, to solve the inequality 4''x'' < 2''x'' + 1 ≤ 3''x'' + 2, it is not possible to isolate ''x'' in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding ''x'' < 1/2 and ''x'' ≥ −1 respectively, which can be combined into the final solution −1 ≤ ''x'' < 1/2. Occasionally, chained notation is used with inequalities in different directions, in which case the meaning is the logical conjunction of the inequalities between adjacent terms. For example, the defining condition of a zigzag poset is written as ''a''1 < ''a''2 > ''a''3 < ''a''4 > ''a''5 < ''a''6 > ... . Mixed chained notation is used more often with compatible relations, like <, =, ≤. For instance, ''a'' < ''b'' = ''c'' ≤ ''d'' means that ''a'' < ''b'', ''b'' = ''c'', and ''c'' ≤ ''d''. This notation exists in a few programming languages such as Python. In contrast, in programming languages that provide an ordering on the type of comparison results, such as C, even homogeneous chains may have a completely different meaning.


Sharp inequalities

An inequality is said to be ''sharp'' if it cannot be ''relaxed'' and still be valid in general. Formally, a universally quantified inequality ''φ'' is called sharp if, for every valid universally quantified inequality ''ψ'', if holds, then also holds. For instance, the inequality is sharp, whereas the inequality is not sharp.


Inequalities between means

There are many inequalities between means. For example, for any positive numbers ''a''1, ''a''2, ..., ''a''''n'' we have where they represent the following means of the sequence: ;
Harmonic mean In mathematics, the harmonic mean is one of several kinds of average, and in particular, one of the Pythagorean means. It is sometimes appropriate for situations when the average rate is desired. The harmonic mean can be expressed as the recipro ...
: H = \frac ;
Geometric mean In mathematics, the geometric mean is a mean or average which indicates a central tendency of a set of numbers by using the product of their values (as opposed to the arithmetic mean which uses their sum). The geometric mean is defined as the ...
: G = \sqrt ;
Arithmetic mean In mathematics and statistics, the arithmetic mean ( ) or arithmetic average, or just the ''mean'' or the ''average'' (when the context is clear), is the sum of a collection of numbers divided by the count of numbers in the collection. The colle ...
: A = \frac ; quadratic mean : Q = \sqrt


Cauchy–Schwarz inequality

The Cauchy–Schwarz inequality states that for all vectors ''u'' and ''v'' of an inner product space it is true that , \langle \mathbf,\mathbf\rangle, ^2 \leq \langle \mathbf,\mathbf\rangle \cdot \langle \mathbf,\mathbf\rangle, where \langle\cdot,\cdot\rangle is the inner product. Examples of inner products include the real and complex dot product; In Euclidean space ''R''''n'' with the standard inner product, the Cauchy–Schwarz inequality is \left(\sum_^n u_i v_i\right)^2\leq \left(\sum_^n u_i^2\right) \left(\sum_^n v_i^2\right).


Power inequalities

A "power inequality" is an inequality containing terms of the form ''a''''b'', where ''a'' and ''b'' are real positive numbers or variable expressions. They often appear in
mathematical olympiads Mathematics competitions or mathematical olympiads are competitive events where participants complete a math test. These tests may require multiple choice or numeric answers, or a detailed written solution or proof. International mathematics comp ...
exercises.


Examples

* For any real ''x'', e^x \ge 1+x. * If ''x'' > 0 and ''p'' > 0, then \frac \ge \ln(x) \ge \frac. In the limit of ''p'' → 0, the upper and lower bounds converge to ln(''x''). * If ''x'' > 0, then x^x \ge \left( \frac\right)^\frac. * If ''x'' > 0, then x^ \ge x. * If ''x'', ''y'', ''z'' > 0, then \left(x+y\right)^z + \left(x+z\right)^y + \left(y+z\right)^x > 2. * For any real distinct numbers ''a'' and ''b'', \frac > e^. * If ''x'', ''y'' > 0 and 0 < ''p'' < 1, then x^p+y^p > \left(x+y\right)^p. * If ''x'', ''y'', ''z'' > 0, then x^x y^y z^z \ge \left(xyz\right)^. * If ''a'', ''b'' > 0, then a^a + b^b \ge a^b + b^a. * If ''a'', ''b'' > 0, then a^ + b^ \ge a^ + b^. * If ''a'', ''b'', ''c'' > 0, then a^ + b^ + c^ \ge a^ + b^ + c^. * If ''a'', ''b'' > 0, then a^b + b^a > 1.


Well-known inequalities

Mathematicians often use inequalities to bound quantities for which exact formulas cannot be computed easily. Some inequalities are used so often that they have names: * Azuma's inequality * Bernoulli's inequality * Bell's inequality * Boole's inequality *
Cauchy–Schwarz inequality The Cauchy–Schwarz inequality (also called Cauchy–Bunyakovsky–Schwarz inequality) is considered one of the most important and widely used inequalities in mathematics. The inequality for sums was published by . The corresponding inequality fo ...
* Chebyshev's inequality *
Chernoff's inequality In probability theory, the Chernoff bound gives exponentially decreasing bounds on tail distributions of sums of independent random variables. Despite being named after Herman Chernoff, the author of the paper it first appeared in, the result is ...
* Cramér–Rao inequality * Hoeffding's inequality *
Hölder's inequality In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of spaces. :Theorem (Hölder's inequality). Let be a measure space and let with . ...
* Inequality of arithmetic and geometric means *
Jensen's inequality In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier pr ...
* Kolmogorov's inequality * Markov's inequality * Minkowski inequality * Nesbitt's inequality * Pedoe's inequality * Poincaré inequality * Samuelson's inequality * Triangle inequality


Complex numbers and inequalities

The set of complex numbers ℂ with its operations of
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol ) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication and Division (mathematics), division. ...
and
multiplication Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being additi ...
is a field, but it is impossible to define any relation ≤ so that becomes an ordered field. To make an ordered field, it would have to satisfy the following two properties: * if , then ; * if and , then . Because ≤ is a total order, for any number ''a'', either or (in which case the first property above implies that ). In either case ; this means that and ; so and , which means (−1 + 1) > 0; contradiction. However, an operation ≤ can be defined so as to satisfy only the first property (namely, "if , then "). Sometimes the
lexicographical order In mathematics, the lexicographic or lexicographical order (also known as lexical order, or dictionary order) is a generalization of the alphabetical order of the dictionaries to sequences of ordered symbols or, more generally, of elements of a ...
definition is used: * , if ** , or ** and It can easily be proven that for this definition implies .


Vector inequalities

Inequality relationships similar to those defined above can also be defined for column vectors. If we let the vectors x, y \in \mathbb^n (meaning that x = (x_1, x_2, \ldots, x_n)^\mathsf and y = (y_1, y_2, \ldots, y_n)^\mathsf, where x_i and y_i are real numbers for i = 1, \ldots, n), we can define the following relationships: * x = y , if x_i = y_i for i = 1, \ldots, n. * x < y , if x_i < y_i for i = 1, \ldots, n. * x \leq y , if x_i \leq y_i for i = 1, \ldots, n and x \neq y. * x \leqq y , if x_i \leq y_i for i = 1, \ldots, n. Similarly, we can define relationships for x > y, x \geq y, and x \geqq y. This notation is consistent with that used by Matthias Ehrgott in ''Multicriteria Optimization'' (see References). The
trichotomy property In mathematics, the law of trichotomy states that every real number is either positive, negative, or zero.T ...
(as stated above) is not valid for vector relationships. For example, when x = (2, 5)^\mathsf and y = (3, 4)^\mathsf, there exists no valid inequality relationship between these two vectors. However, for the rest of the aforementioned properties, a parallel property for vector inequalities exists.


Systems of inequalities

Systems of linear inequalities can be simplified by Fourier–Motzkin elimination. The cylindrical algebraic decomposition is an algorithm that allows testing whether a system of polynomial equations and inequalities has solutions, and, if solutions exist, describing them. The complexity of this algorithm is doubly exponential in the number of variables. It is an active research domain to design algorithms that are more efficient in specific cases.


See also

*
Binary relation In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of ele ...
* Bracket (mathematics), for the use of similar ‹ and › signs as
bracket A bracket is either of two tall fore- or back-facing punctuation marks commonly used to isolate a segment of text or data from its surroundings. Typically deployed in symmetric pairs, an individual bracket may be identified as a 'left' or 'r ...
s * Inclusion (set theory) * Inequation *
Interval (mathematics) In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Othe ...
*
List of inequalities This article lists Wikipedia articles about named mathematical inequalities. Inequalities in pure mathematics Analysis * Agmon's inequality * Askey–Gasper inequality * Babenko–Beckner inequality * Bernoulli's inequality * Bernstein's in ...
* List of triangle inequalities * Partially ordered set * Relational operators, used in programming languages to denote inequality


References


Sources

* * * * * * * * * * *


External links

*
Graph of Inequalities
by
Ed Pegg, Jr. Edward Taylor Pegg Jr. (born December 7, 1963) is an expert on mathematical puzzles and is a self-described recreational mathematician. He wrote an online puzzle column called Ed Pegg Jr.'s ''Math Games'' for the Mathematical Association of Amer ...

AoPS Wiki entry about Inequalities
{{Authority control Elementary algebra Mathematical terminology