Global Lorentz Covariance
   HOME

TheInfoList



OR:

In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist
Hendrik Lorentz Hendrik Antoon Lorentz (; 18 July 1853 – 4 February 1928) was a Dutch physicist who shared the 1902 Nobel Prize in Physics with Pieter Zeeman for the discovery and theoretical explanation of the Zeeman effect. He also derived the Lorentz t ...
, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same for all observers that are moving with respect to one another within an
inertial frame In classical physics and special relativity, an inertial frame of reference (also called inertial reference frame, inertial frame, inertial space, or Galilean reference frame) is a frame of reference that is not undergoing any acceleration. ...
. It has also been described as "the feature of nature that says experimental results are independent of the orientation or the boost velocity of the laboratory through space". Lorentz covariance, a related concept, is a property of the underlying spacetime manifold. Lorentz covariance has two distinct, but closely related meanings: # A
physical quantity A physical quantity is a physical property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a ' Numerical value ' and a ' Unit '. For examp ...
is said to be Lorentz covariant if it transforms under a given
representation Representation may refer to: Law and politics *Representation (politics), political activities undertaken by elected representatives, as well as other theories ** Representative democracy, type of democracy in which elected officials represent a ...
of the Lorentz group. According to the representation theory of the Lorentz group, these quantities are built out of scalars, four-vectors, four-tensors, and spinors. In particular, a Lorentz covariant scalar (e.g., the space-time interval) remains the same under Lorentz transformations and is said to be a ''Lorentz invariant'' (i.e., they transform under the trivial representation). # An
equation In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for example, in ...
is said to be Lorentz covariant if it can be written in terms of Lorentz covariant quantities (confusingly, some use the term ''invariant'' here). The key property of such equations is that if they hold in one inertial frame, then they hold in any inertial frame; this follows from the result that if all the components of a tensor vanish in one frame, they vanish in every frame. This condition is a requirement according to the
principle of relativity In physics, the principle of relativity is the requirement that the equations describing the laws of physics have the same form in all admissible frames of reference. For example, in the framework of special relativity the Maxwell equations have ...
; i.e., all non-
gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
al laws must make the same predictions for identical experiments taking place at the same spacetime event in two different
inertial frames of reference In classical physics and special relativity, an inertial frame of reference (also called inertial reference frame, inertial frame, inertial space, or Galilean reference frame) is a frame of reference that is not undergoing any acceleratio ...
. On
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
s, the words ''covariant'' and ''contravariant'' refer to how objects transform under general coordinate transformations. Both covariant and contravariant four-vectors can be Lorentz covariant quantities. Local Lorentz covariance, which follows from general relativity, refers to Lorentz covariance applying only ''locally'' in an infinitesimal region of spacetime at every point. There is a generalization of this concept to cover Poincaré covariance and Poincaré invariance.


Examples

In general, the (transformational) nature of a Lorentz tensor can be identified by its tensor order, which is the number of free indices it has. No indices implies it is a scalar, one implies that it is a vector, etc. Some tensors with a physical interpretation are listed below. The sign convention of the Minkowski metric is used throughout the article.


Scalars

; Spacetime interval:\Delta s^2=\Delta x^a \Delta x^b \eta_=c^2 \Delta t^2 - \Delta x^2 - \Delta y^2 - \Delta z^2 ; Proper time (for timelike intervals):\Delta \tau = \sqrt,\, \Delta s^2 > 0 ;
Proper distance Proper length or rest length is the length of an object in the object's rest frame. The measurement of lengths is more complicated in the theory of relativity than in classical mechanics. In classical mechanics, lengths are measured based on t ...
(for spacelike intervals):L = \sqrt,\, \Delta s^2 < 0 ; Mass:m_0^2 c^2 = P^a P^b \eta_= \frac - p_x^2 - p_y^2 - p_z^2 ;Electromagnetism invariants:\begin F_ F^ &= \ 2 \left( B^2 - \frac \right) \\ G_ F^ &= \frac\epsilon_F^ F^ = - \frac \left( \vec \cdot \vec \right) \end ; D'Alembertian/wave operator:\Box = \eta^\partial_\mu \partial_\nu = \frac\frac - \frac - \frac - \frac


Four-vectors

; 4-displacement: \Delta X^a = \left(c\Delta t, \Delta\vec\right) = (c\Delta t, \Delta x, \Delta y, \Delta z) ;
4-position In special relativity, a four-vector (or 4-vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a ...
: X^a = \left(ct, \vec\right) = (ct, x, y, z) ;
4-gradient In differential geometry, the four-gradient (or 4-gradient) \boldsymbol is the four-vector analogue of the gradient \vec from vector calculus. In special relativity and in quantum mechanics, the four-gradient is used to define the properties and re ...
: which is the 4D
partial derivative In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Part ...
: \partial^a = \left(\frac, -\vec\right) = \left(\frac\frac, -\frac, -\frac, -\frac \right) ; 4-velocity: U^a = \gamma\left(c, \vec\right) = \gamma \left(c, \frac, \frac, \frac\right) where U^a = \frac ; 4-momentum: P^a = \left(\gamma mc, \gamma m\vec\right) = \left(\frac, \vec\right) = \left(\frac, p_x, p_y, p_z\right) where P^a = m U^a and m is the rest mass. ;
4-current In special and general relativity, the four-current (technically the four-current density) is the four-dimensional analogue of the electric current density. Also known as vector current, it is used in the geometric context of ''four-dimensional spa ...
: J^a = \left(c\rho, \vec\right) = \left(c\rho, j_x, j_y, j_z\right) where J^a = \rho_o U^a ;
4-potential An electromagnetic four-potential is a relativistic vector function from which the electromagnetic field can be derived. It combines both an electric scalar potential and a magnetic vector potential into a single four-vector.Gravitation, J.A. Whe ...
: A^a = \left(\frac, \vec\right)= \left(\frac, A_x, A_y, A_z\right)


Four-tensors

; Kronecker delta:\delta^a_b = \begin 1 & \mbox a = b, \\ 0 & \mbox a \ne b. \end ; Minkowski metric (the metric of flat space according to general relativity):\eta_ = \eta^ = \begin 1 & \mbox a = b = 0, \\ -1 & \mboxa = b = 1, 2, 3, \\ 0 & \mbox a \ne b. \end ;
Electromagnetic field tensor In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime. Th ...
(using a metric signature of + − − −):F_ = \begin 0 & \fracE_x & \fracE_y & \fracE_z \\ -\fracE_x & 0 & -B_z & B_y \\ -\fracE_y & B_z & 0 & -B_x \\ -\fracE_z & -B_y & B_x & 0 \end ;
Dual Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual (grammatical ...
electromagnetic field tensor:G_ = \frac\epsilon_F^ = \begin 0 & B_x & B_y & B_z \\ -B_x & 0 & \fracE_z & -\fracE_y \\ -B_y & -\fracE_z & 0 & \fracE_x \\ -B_z & \fracE_y & -\fracE_x & 0 \end


Lorentz violating models

In standard field theory, there are very strict and severe constraints on marginal and relevant Lorentz violating operators within both QED and the
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying a ...
. Irrelevant Lorentz violating operators may be suppressed by a high cutoff scale, but they typically induce marginal and relevant Lorentz violating operators via radiative corrections. So, we also have very strict and severe constraints on irrelevant Lorentz violating operators. Since some approaches to
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics; it deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vi ...
lead to violations of Lorentz invariance, these studies are part of phenomenological quantum gravity. Lorentz violations are allowed in
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interac ...
,
supersymmetry In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories e ...
and Hořava–Lifshitz gravity. Lorentz violating models typically fall into four classes: * The laws of physics are exactly Lorentz covariant but this symmetry is
spontaneously broken Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the ...
. In special relativistic theories, this leads to
phonon In physics, a phonon is a collective excitation in a periodic, Elasticity (physics), elastic arrangement of atoms or molecules in condensed matter physics, condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phon ...
s, which are the Goldstone bosons. The phonons travel at ''less'' than the speed of light. * Similar to the approximate Lorentz symmetry of phonons in a lattice (where the speed of sound plays the role of the critical speed), the Lorentz symmetry of special relativity (with the speed of light as the critical speed in vacuum) is only a low-energy limit of the laws of physics, which involve new phenomena at some fundamental scale. Bare conventional "elementary" particles are not point-like field-theoretical objects at very small distance scales, and a nonzero fundamental length must be taken into account. Lorentz symmetry violation is governed by an energy-dependent parameter which tends to zero as momentum decreases. Such patterns require the existence of a privileged local inertial frame (the "vacuum rest frame"). They can be tested, at least partially, by ultra-high energy cosmic ray experiments like the Pierre Auger Observatory. * The laws of physics are symmetric under a deformation of the Lorentz or more generally, the Poincaré group, and this deformed symmetry is exact and unbroken. This deformed symmetry is also typically a quantum group symmetry, which is a generalization of a group symmetry. Deformed special relativity is an example of this class of models. The deformation is scale dependent, meaning that at length scales much larger than the Planck scale, the symmetry looks pretty much like the Poincaré group. Ultra-high energy cosmic ray experiments cannot test such models. * Very special relativity forms a class of its own; if charge-parity (CP) is an exact symmetry, a subgroup of the Lorentz group is sufficient to give us all the standard predictions. This is, however, not the case. Models belonging to the first two classes can be consistent with experiment if Lorentz breaking happens at Planck scale or beyond it, or even before it in suitable preonic models, and if Lorentz symmetry violation is governed by a suitable energy-dependent parameter. One then has a class of models which deviate from Poincaré symmetry near the Planck scale but still flows towards an exact Poincaré group at very large length scales. This is also true for the third class, which is furthermore protected from radiative corrections as one still has an exact (quantum) symmetry. Even though there is no evidence of the violation of Lorentz invariance, several experimental searches for such violations have been performed during recent years. A detailed summary of the results of these searches is given in the Data Tables for Lorentz and CPT Violation. Lorentz invariance is also violated in QFT assuming non-zero temperature. There is also growing evidence of Lorentz violation in Weyl semimetals and Dirac semimetals.


See also

*
4-vector In special relativity, a four-vector (or 4-vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a ...
* Antimatter tests of Lorentz violation * Fock–Lorentz symmetry * General covariance * Lorentz invariance in loop quantum gravity * Lorentz-violating electrodynamics * Lorentz-violating neutrino oscillations * Planck length * Symmetry in physics


Notes


References

* Background information on Lorentz and CPT violation: http://www.physics.indiana.edu/~kostelec/faq.html * * * * * {{cite journal, doi=10.1103/PhysRevD.67.124011, title=Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics, year=2003, last1=Jacobson, first1=T., last2=Liberati, first2=S., last3=Mattingly, first3=D., journal=Physical Review D, volume=67, issue=12, pages=124011, arxiv = hep-ph/0209264 , bibcode = 2003PhRvD..67l4011J , s2cid=119452240 Special relativity Symmetry Hendrik Lorentz