HOME

TheInfoList



OR:

Ordinary
trigonometry Trigonometry () is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths. The fiel ...
studies
triangle A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimension ...
s in the
Euclidean plane In mathematics, a Euclidean plane is a Euclidean space of Two-dimensional space, dimension two, denoted \textbf^2 or \mathbb^2. It is a geometric space in which two real numbers are required to determine the position (geometry), position of eac ...
. There are a number of ways of defining the ordinary Euclidean geometric
trigonometric functions In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all ...
on
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s, for example right-angled triangle definitions, unit circle definitions, series definitions, definitions via differential equations, and definitions using functional equations. Generalizations of trigonometric functions are often developed by starting with one of the above methods and adapting it to a situation other than the real numbers of Euclidean geometry. Generally, trigonometry can be the study of triples of points in any kind of
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
or
space Space is a three-dimensional continuum containing positions and directions. In classical physics, physical space is often conceived in three linear dimensions. Modern physicists usually consider it, with time, to be part of a boundless ...
. A triangle is the
polygon In geometry, a polygon () is a plane figure made up of line segments connected to form a closed polygonal chain. The segments of a closed polygonal chain are called its '' edges'' or ''sides''. The points where two edges meet are the polygon ...
with the smallest number of vertices, so one direction to generalize is to study higher-dimensional analogs of
angle In Euclidean geometry, an angle can refer to a number of concepts relating to the intersection of two straight Line (geometry), lines at a Point (geometry), point. Formally, an angle is a figure lying in a Euclidean plane, plane formed by two R ...
s and polygons:
solid angle In geometry, a solid angle (symbol: ) is a measure of the amount of the field of view from some particular point that a given object covers. That is, it is a measure of how large the object appears to an observer looking from that point. The poin ...
s and
polytopes In elementary geometry, a polytope is a geometric object with Flat (geometry), flat sides (''Face (geometry), faces''). Polytopes are the generalization of three-dimensional polyhedron, polyhedra to any number of dimensions. Polytopes may exist ...
such as
tetrahedron In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
s and -simplices.


Trigonometry

*In
spherical trigonometry Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the edge (geometry), sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, ge ...
, triangles on the surface of a
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
are studied. The spherical triangle identities are written in terms of the ordinary trigonometric functions but differ from the plane triangle identities. *Hyperbolic trigonometry: *# Study of
hyperbolic triangle In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called ''sides'' or ''edges'' and three point (geometry), points called ''angles'' or ''vertices''. Just as in the Euclidea ...
s in
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For a ...
with
hyperbolic functions In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the u ...
. *#
Hyperbolic functions In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the u ...
in Euclidean geometry: The
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucli ...
is parameterized by (cos ''t'', sin ''t'') whereas the equilateral
hyperbola In mathematics, a hyperbola is a type of smooth function, smooth plane curve, curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected component ( ...
is parameterized by (cosh ''t'', sinh ''t''). *# Gyrotrigonometry: A form of trigonometry used in the gyrovector space approach to
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or János Bolyai, Bolyai–Nikolai Lobachevsky, Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For a ...
, with applications to
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity, "On the Ele ...
and
quantum computation A quantum computer is a computer that exploits quantum mechanical phenomena. On small scales, physical matter exhibits properties of both particles and waves, and quantum computing takes advantage of this behavior using specialized hardware. C ...
. *Trigonometry for
taxicab geometry Taxicab geometry or Manhattan geometry is geometry where the familiar Euclidean distance is ignored, and the distance between two points is instead defined to be the sum of the absolute differences of their respective Cartesian coordinates, a dis ...
*Spacetime trigonometries *Fuzzy qualitative trigonometry *Operator trigonometry *Lattice trigonometry *Trigonometry on symmetric spaces


Higher dimensions

*
Schläfli orthoscheme In geometry, a Schläfli orthoscheme is a type of simplex. The orthoscheme is the generalization of the right triangle to simplex figures of any number of dimensions. Orthoschemes are defined by a sequence of Edge (geometry), edges (v_0v_1), (v_1v ...
s - right simplexes (right triangles generalized to ''n'' dimensions) - studied by Schoute who called the generalized trigonometry of ''n'' Euclidean dimensions polygonometry. ** Pythagorean theorems for ''n''-simplices with an "orthogonal corner" * Trigonometry of a tetrahedron ** De Gua's theorem – a Pythagorean theorem for a tetrahedron with a cube corner ** A law of sines for tetrahedra *
Polar sine In geometry, the polar sine generalizes the sine function of angle to the vertex angle of a polytope. It is denoted by psin. Definition ''n'' vectors in ''n''-dimensional space Let v1, ..., v''n'' (''n'' ≥ 1) be non-zero ...


Trigonometric functions

*Trigonometric functions can be defined for fractional differential equations. *In
time scale calculus In mathematics, time-scale calculus is a unification of the theory of difference equations with that of differential equations, unifying integral and differential calculus with the calculus of finite differences, offering a formalism for studying ...
, differential equations and
difference equation In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter ...
s are unified into dynamic equations on time scales which also includes q-difference equations. Trigonometric functions can be defined on an arbitrary time scale (a subset of the real numbers). *The series definitions of sin and cos define these functions on any
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
where the
series Series may refer to: People with the name * Caroline Series (born 1951), English mathematician, daughter of George Series * George Series (1920–1995), English physicist Arts, entertainment, and media Music * Series, the ordered sets used i ...
converge Converge may refer to: * Converge (band), American hardcore punk band * Converge (Baptist denomination), American national evangelical Baptist body * Limit (mathematics) In mathematics, a limit is the value that a function (or sequence) app ...
such as
complex numbers In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a ...
, ''p''-adic numbers,
matrices Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the ...
, and various
Banach algebra In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach sp ...
s.


Other

*Polar/Trigonometric forms of
hypercomplex number In mathematics, hypercomplex number is a traditional term for an element (mathematics), element of a finite-dimensional Algebra over a field#Unital algebra, unital algebra over a field, algebra over the field (mathematics), field of real numbers. ...
s *Polygonometry – trigonometric identities for multiple distinct angles *The Lemniscate elliptic functions, sinlem and coslem


See also

* The Pythagorean theorem in non-Euclidean geometry


References

{{DEFAULTSORT:Generalized Trigonometry Trigonometry