Field Effect (semiconductor)
   HOME

TheInfoList



OR:

In physics, the field effect refers to the modulation of the
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allow ...
of a material by the application of an external
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
. In a
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
, the electron density that responds to applied fields is so large that an external electric field can penetrate only a very short distance into the material. However, in a
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
the lower density of
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s (and possibly
hole A hole is an opening in or through a particular medium, usually a solid body. Holes occur through natural and artificial processes, and may be useful for various purposes, or may represent a problem needing to be addressed in many fields of en ...
s) that can respond to an applied field is sufficiently small that the field can penetrate quite far into the material. This field penetration alters the conductivity of the semiconductor near its surface, and is called the ''field effect''. The field effect underlies the operation of the
Schottky diode The Schottky diode (named after the German physicist Walter H. Schottky), also known as Schottky barrier diode or hot-carrier diode, is a semiconductor diode formed by the junction of a semiconductor with a metal. It has a low forward voltage ...
and of
field-effect transistor The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: ''source'', ''gate'', and ''drain''. FETs contro ...
s, notably the
MOSFET The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
, the
JFET The junction-gate field-effect transistor (JFET) is one of the simplest types of field-effect transistor. JFETs are three-terminal semiconductor devices that can be used as electronically controlled switches or resistors, or to build amplifier ...
and the
MESFET A MESFET (metal–semiconductor field-effect transistor) is a field-effect transistor semiconductor device similar to a JFET with a Schottky (metal–semiconductor) junction instead of a p–n junction for a gate. Construction MESFETs are constr ...
.The acronyms stand for ''M''etal ''O''xide ''S''emiconductor ''F''ield ''E''ffect ''T''ransistor, ''J''unction ''F''ield ''E''ffect ''T''ransistor, and ''ME''tal ''S''emiconductor ''F''ield ''E''ffect ''T''ransistor. For a discussion see, for example,


Surface conductance and band bending

The change in surface conductance occurs because the applied field alters the energy levels available to electrons to considerable depths from the surface, and that in turn changes the occupancy of the energy levels in the surface region. A typical treatment of such effects is based upon a ''band-bending diagram'' showing the positions in energy of the ''band edges'' as a function of depth into the material. An example band-bending diagram is shown in the figure. For convenience, energy is expressed in eV and voltage is expressed in volts, avoiding the need for a factor ''q'' for the
elementary charge The elementary charge, usually denoted by is the electric charge carried by a single proton or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 . This elementary charge is a fundame ...
. In the figure, a two-layer structure is shown, consisting of an insulator as left-hand layer and a semiconductor as right-hand layer. An example of such a structure is the ''
MOS capacitor The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
'', a two-terminal structure made up of a metal ''gate'' contact, a semiconductor ''body'' (such as silicon) with a body contact, and an intervening insulating layer (such as
silicon dioxide Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one ...
, hence the designation ''O''). The left panels show the lowest energy level of the conduction band and the highest energy level of the valence band. These levels are "bent" by the application of a positive voltage ''V''. By convention, the energy of electrons is shown, so a positive voltage penetrating the surface ''lowers'' the conduction edge. A dashed line depicts the occupancy situation: below this
Fermi level The Fermi level of a solid-state body is the thermodynamic work required to add one electron to the body. It is a thermodynamic quantity usually denoted by ''µ'' or ''E''F for brevity. The Fermi level does not include the work required to remove ...
the states are more likely to be occupied, the conduction band moves closer to the Fermi level, indicating more electrons are in the conducting band near the insulator.


Bulk region

The example in the figure shows the Fermi level in the bulk material beyond the range of the applied field as lying close to the valence band edge. This position for the occupancy level is arranged by introducing impurities into the semiconductor. In this case the impurities are so-called ''acceptors'' which soak up electrons from the valence band becoming negatively charged, immobile ions embedded in the semiconductor material. The removed electrons are drawn from the valence band levels, leaving vacancies or ''holes'' in the valence band. Charge neutrality prevails in the field-free region because a negative acceptor ion creates a positive deficiency in the host material: a hole is the absence of an electron, it behaves like a positive charge. Where no field is present, neutrality is achieved because the negative acceptor ions exactly balance the positive holes.


Surface region

Next the band bending is described. A positive charge is placed on the left face of the insulator (for example using a metal "gate" electrode). In the insulator there are no charges so the electric field is constant, leading to a linear change of voltage in this material. As a result, the insulator conduction and valence bands are therefore straight lines in the figure, separated by the large insulator energy gap. In the semiconductor at the smaller voltage shown in the top panel, the positive charge placed on the left face of the insulator lowers the energy of the valence band edge. Consequently, these states are fully occupied out to a so-called ''depletion depth'' where the bulk occupancy reestablishes itself because the field cannot penetrate further. Because the valence band levels near the surface are fully occupied due to the lowering of these levels, only the immobile negative acceptor-ion charges are present near the surface, which becomes an electrically insulating region without holes (the ''depletion layer''). Thus, field penetration is arrested when the exposed negative acceptor ion charge balances the positive charge placed on the insulator surface: the depletion layer adjusts its depth enough to make the net negative acceptor ion charge balance the positive charge on the gate.


Inversion

The conduction band edge also is lowered, increasing electron occupancy of these states, but at low voltages this increase is not significant. At larger applied voltages, however, as in the bottom panel, the conduction band edge is lowered sufficiently to cause significant population of these levels in a narrow surface layer, called an ''inversion'' layer because the electrons are opposite in polarity to the holes originally populating the semiconductor. This onset of electron charge in the inversion layer becomes very significant at an applied ''threshold'' voltage, and once the applied voltage exceeds this value charge neutrality is achieved almost entirely by addition of electrons to the inversion layer rather than by an increase in acceptor ion charge by expansion of the depletion layer. Further field penetration into the semiconductor is arrested at this point, as the electron density increases exponentially with band-bending beyond the threshold voltage, effectively ''pinning'' the depletion layer depth at its value at threshold voltages.


References

{{citizendium, title=Field effect#Field effect Semiconductors Semiconductor technology Semiconductor structures Electronic band structures Physical phenomena MOSFETs