In
physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
and
astronomy
Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
, a frame of reference (or reference frame) is an abstract
coordinate system whose
origin
Origin(s) or The Origin may refer to:
Arts, entertainment, and media
Comics and manga
* ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002
* ''The Origin'' (Buffy comic), a 1999 ''Buffy the Vampire Sl ...
,
orientation
Orientation may refer to:
Positioning in physical space
* Map orientation, the relationship between directions on a map and compass directions
* Orientation (housing), the position of a building with respect to the sun, a concept in building de ...
, and
scale are specified by a set of reference points―
geometric points whose
position
Position often refers to:
* Position (geometry), the spatial location (rather than orientation) of an entity
* Position, a job or occupation
Position may also refer to:
Games and recreation
* Position (poker), location relative to the dealer
* ...
is identified both mathematically (with numerical coordinate values) and physically (signaled by conventional markers).
For ''n'' dimensions, reference points are sufficient to fully define a reference frame. Using
rectangular Cartesian coordinates, a reference frame may be defined with a reference point at the origin and a reference point at one unit distance along each of the ''n'' coordinate
axes
Axes, plural of '' axe'' and of '' axis'', may refer to
* ''Axes'' (album), a 2005 rock album by the British band Electrelane
* a possibly still empty plot (graphics)
See also
* Axess (disambiguation)
*Axxess (disambiguation) Axxess may refer to ...
.
In
Einsteinian relativity, reference frames are used to specify the relationship between a moving
observer
An observer is one who engages in observation or in watching an experiment.
Observer may also refer to:
Computer science and information theory
* In information theory, any system which receives information from an object
* State observer in co ...
and the phenomenon under observation. In this context, the term often becomes observational frame of reference (or observational reference frame), which implies that the observer is at rest in the frame, although not necessarily located at its
origin
Origin(s) or The Origin may refer to:
Arts, entertainment, and media
Comics and manga
* ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002
* ''The Origin'' (Buffy comic), a 1999 ''Buffy the Vampire Sl ...
. A relativistic reference frame includes (or implies) the
coordinate time
In the theory of relativity, it is convenient to express results in terms of a spacetime coordinate system relative to an implied observer. In many (but not all) coordinate systems, an event is specified by one time coordinate and three spatial ...
, which does not equate across different reference frames
moving relatively to each other. The situation thus differs from
Galilean relativity
Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his '' Dialogue Concerning the Two Chief World Systems'' using t ...
, in which all possible coordinate times are essentially equivalent.
Definition
The need to distinguish between the various meanings of "frame of reference" has led to a variety of terms. For example, sometimes the type of coordinate system is attached as a modifier, as in ''Cartesian frame of reference''. Sometimes the state of motion is emphasized, as in ''
rotating frame of reference''. Sometimes the way it transforms to frames considered as related is emphasized as in ''
Galilean frame of reference''. Sometimes frames are distinguished by the scale of their observations, as in ''macroscopic'' and ''microscopic frames of reference''.
[The distinction between macroscopic and microscopic frames shows up, for example, in electromagnetism where ]constitutive relations
In physics and engineering, a constitutive equation or constitutive relation is a relation between two physical quantities (especially kinetic quantities as related to kinematic quantities) that is specific to a material or substance, and app ...
of various time and length scales are used to determine the current and charge densities entering Maxwell's equations
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits.
...
. See, for example, . These distinctions also appear in thermodynamics. See .
In this article, the term ''observational frame of reference'' is used when emphasis is upon the ''state of motion'' rather than upon the coordinate choice or the character of the observations or observational apparatus. In this sense, an observational frame of reference allows study of the effect of motion upon an entire family of coordinate systems that could be attached to this frame. On the other hand, a ''coordinate system'' may be employed for many purposes where the state of motion is not the primary concern. For example, a coordinate system may be adopted to take advantage of the symmetry of a system. In a still broader perspective, the formulation of many problems in physics employs ''
generalized coordinates
In analytical mechanics, generalized coordinates are a set of parameters used to represent the state of a system in a configuration space. These parameters must uniquely define the configuration of the system relative to a reference state.,p. 39 ...
'', ''
normal modes'' or ''
eigenvectors
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted ...
'', which are only indirectly related to space and time. It seems useful to divorce the various aspects of a reference frame for the discussion below. We therefore take observational frames of reference, coordinate systems, and observational equipment as independent concepts, separated as below:
* An observational frame (such as an
inertial frame or
non-inertial frame of reference
A non-inertial reference frame is a frame of reference that undergoes acceleration with respect to an inertial frame. An accelerometer at rest in a non-inertial frame will, in general, detect a non-zero acceleration. While the laws of motion ar ...
) is a physical concept related to state of motion.
* A coordinate system is a mathematical concept, amounting to a choice of language used to describe observations.
[
In very general terms, a coordinate system is a set of arcs ''x''i = ''x''i (''t'') in a complex Lie group; see . Less abstractly, a coordinate system in a space of n-dimensions is defined in terms of a basis set of vectors ; see As such, the coordinate system is a mathematical construct, a language, that may be related to motion, but has no necessary connection to motion.] Consequently, an observer in an observational frame of reference can choose to employ any coordinate system (Cartesian, polar, curvilinear, generalized, …) to describe observations made from that frame of reference. A change in the choice of this coordinate system does not change an observer's state of motion, and so does not entail a change in the observer's ''observational'' frame of reference. This viewpoint can be found elsewhere as well.
[
] Which is not to dispute that some coordinate systems may be a better choice for some observations than are others.
* Choice of what to measure and with what observational apparatus is a matter separate from the observer's state of motion and choice of coordinate system.
Coordinate systems
Although the term "coordinate system" is often used (particularly by physicists) in a nontechnical sense, the term "coordinate system" does have a precise meaning in mathematics, and sometimes that is what the physicist means as well.
A coordinate system in mathematics is a facet of
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
or of
algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics.
Elementary ...
,
in particular, a property of
manifolds (for example, in physics,
configuration spaces or
phase spaces).
[According to Hawking and Ellis: "A manifold is a space locally similar to Euclidean space in that it can be covered by coordinate patches. This structure allows differentiation to be defined, but does not distinguish between different coordinate systems. Thus, the only concepts defined by the manifold structure are those that are independent of the choice of a coordinate system." A mathematical definition is: ''A connected ]Hausdorff space
In topology and related branches of mathematics, a Hausdorff space ( , ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the m ...
''M'' is called an ''n''-dimensional manifold if each point of ''M'' is contained in an open set that is homeomorphic to an open set in Euclidean ''n''-dimensional space.'' The
coordinates of a point r in an ''n''-dimensional space are simply an ordered set of ''n'' numbers:
[Se]
Encarta definition
2009-10-31.
:
In a general
Banach space, these numbers could be (for example) coefficients in a functional expansion like a
Fourier series. In a physical problem, they could be
spacetime
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
coordinates or
normal mode amplitudes. In a
robot design, they could be angles of relative rotations, linear displacements, or deformations of
joints
A joint or articulation (or articular surface) is the connection made between bones, ossicles, or other hard structures in the body which link an animal's skeletal system into a functional whole.Saladin, Ken. Anatomy & Physiology. 7th ed. McGraw- ...
.
Here we will suppose these coordinates can be related to a
Cartesian coordinate
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
system by a set of functions:
:
where ''x'', ''y'', ''z'', ''etc.'' are the ''n'' Cartesian coordinates of the point. Given these functions, coordinate surfaces are defined by the relations:
:
The intersection of these surfaces define coordinate lines. At any selected point, tangents to the intersecting coordinate lines at that point define a set of basis vectors at that point. That is:
:
which can be normalized to be of unit length. For more detail see
curvilinear coordinates
In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally inve ...
.
Coordinate surfaces, coordinate lines, and
basis vectors
In mathematics, a set of vectors in a vector space is called a basis if every element of may be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as componen ...
are components of a coordinate system.
If the basis vectors are orthogonal at every point, the coordinate system is an
orthogonal coordinate system.
An important aspect of a coordinate system is its
metric tensor ''g
ik'', which determines the
arc length
ARC may refer to:
Business
* Aircraft Radio Corporation, a major avionics manufacturer from the 1920s to the '50s
* Airlines Reporting Corporation, an airline-owned company that provides ticket distribution, reporting, and settlement services
* ...
''ds'' in the coordinate system in terms of its coordinates:
:
where repeated indices are summed over.
As is apparent from these remarks, a coordinate system is a
mathematical construct, part of an
axiomatic system
In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contains ...
. There is no necessary connection between coordinate systems and physical motion (or any other aspect of reality). However, coordinate systems can include time as a coordinate, and can be used to describe motion. Thus,
Lorentz transformation
In physics, the Lorentz transformations are a six-parameter family of Linear transformation, linear coordinate transformation, transformations from a Frame of Reference, coordinate frame in spacetime to another frame that moves at a constant velo ...
s and
Galilean transformations may be viewed as
coordinate transformation
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sign ...
s.
Observational frame of reference
An observational frame of reference, often referred to as a ''physical frame of reference'', a ''frame of reference'', or simply a ''frame'', is a physical concept related to an
observer
An observer is one who engages in observation or in watching an experiment.
Observer may also refer to:
Computer science and information theory
* In information theory, any system which receives information from an object
* State observer in co ...
and the observer's state of motion. Here we adopt the view expressed by Kumar and Barve: an observational frame of reference is characterized ''only by its state of motion''.
[See ] However, there is lack of unanimity on this point. In special relativity, the distinction is sometimes made between an ''observer'' and a ''frame''. According to this view, a ''frame'' is an ''observer'' plus a coordinate lattice constructed to be an orthonormal right-handed set of spacelike vectors perpendicular to a timelike vector. See Doran.
[.] This restricted view is not used here, and is not universally adopted even in discussions of relativity.
[For example, Møller states: "Instead of Cartesian coordinates we can obviously just as well employ general curvilinear coordinates for the fixation of points in physical space.…we shall now introduce general "curvilinear" coordinates ''x''i in four-space…." ] In
general relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
the use of general coordinate systems is common (see, for example, the
Schwarzschild solution for the gravitational field outside an isolated sphere
).
There are two types of observational reference frame:
inertial
In classical physics and special relativity, an inertial frame of reference (also called inertial reference frame, inertial frame, inertial space, or Galilean reference frame) is a frame of reference that is not undergoing any acceleration. ...
and
non-inertial. An inertial frame of reference is defined as one in which all laws of physics take on their simplest form. In
special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates:
# The laws ...
these frames are related by
Lorentz transformation
In physics, the Lorentz transformations are a six-parameter family of Linear transformation, linear coordinate transformation, transformations from a Frame of Reference, coordinate frame in spacetime to another frame that moves at a constant velo ...
s, which are parametrized by
rapidity. In Newtonian mechanics, a more restricted definition requires only that
Newton's first law
Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows:
# A body remains at rest, or in motion ...
holds true; that is, a Newtonian inertial frame is one in which a
free particle
In physics, a free particle is a particle that, in some sense, is not bound by an external force, or equivalently not in a region where its potential energy varies. In classical physics, this means the particle is present in a "field-free" space. I ...
travels in a
straight line
In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist in two, three, or higher dimension spaces. The word ''line'' may also refer to a line segmen ...
at constant
speed
In everyday use and in kinematics, the speed (commonly referred to as ''v'') of an object is the magnitude
Magnitude may refer to:
Mathematics
*Euclidean vector, a quantity defined by both its magnitude and its direction
*Magnitude (ma ...
, or is at rest. These frames are related by
Galilean transformations. These relativistic and Newtonian transformations are expressed in spaces of general dimension in terms of
representations
''Representations'' is an interdisciplinary journal in the humanities published quarterly by the University of California Press. The journal was established in 1983 and is the founding publication of the New Historicism movement of the 1980s. It ...
of the
Poincaré group
The Poincaré group, named after Henri Poincaré (1906), was first defined by Hermann Minkowski (1908) as the group of Minkowski spacetime isometries. It is a ten-dimensional non-abelian Lie group that is of importance as a model in our und ...
and of the
Galilean group
In physics, a Galilean transformation is used to transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics. These transformations together with spatial rotati ...
.
In contrast to the inertial frame, a non-inertial frame of reference is one in which
fictitious forces must be invoked to explain observations. An example is an observational frame of reference centered at a point on the Earth's surface. This frame of reference orbits around the center of the Earth, which introduces the fictitious forces known as the
Coriolis force,
centrifugal force
In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is parall ...
, and
gravitational force
In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong ...
. (All of these forces including gravity disappear in a truly inertial reference frame, which is one of free-fall.)
Measurement apparatus
A further aspect of a frame of reference is the role of the
measurement apparatus (for example, clocks and rods) attached to the frame (see Norton quote above). This question is not addressed in this article, and is of particular interest in
quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistr ...
, where the relation between observer and measurement is still under discussion (see
measurement problem
In quantum mechanics, the measurement problem is the problem of how, or whether, wave function collapse occurs. The inability to observe such a collapse directly has given rise to different interpretations of quantum mechanics and poses a key se ...
).
In physics experiments, the frame of reference in which the laboratory measurement devices are at rest is usually referred to as the
laboratory frame or simply "lab frame." An example would be the frame in which the detectors for a particle accelerator are at rest. The lab frame in some experiments is an inertial frame, but it is not required to be (for example the laboratory on the surface of the Earth in many physics experiments is not inertial). In particle physics experiments, it is often useful to transform energies and momenta of particles from the lab frame where they are measured, to the
center of momentum frame "COM frame" in which calculations are sometimes simplified, since potentially all kinetic energy still present in the COM frame may be used for making new particles.
In this connection it may be noted that the clocks and rods often used to describe observers' measurement equipment in thought, in practice are replaced by a much more complicated and indirect
metrology that is connected to the nature of the
vacuum
A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often di ...
, and uses
atomic clocks
An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions betwee ...
that operate according to the
standard model and that must be corrected for
gravitational time dilation
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer ...
.
(See
second,
meter
The metre (British spelling) or meter (American spelling; see spelling differences) (from the French unit , from the Greek noun , "measure"), symbol m, is the primary unit of length in the International System of Units (SI), though its pref ...
and
kilogram).
In fact, Einstein felt that clocks and rods were merely expedient measuring devices and they should be replaced by more fundamental entities based upon, for example, atoms and molecules.
[See .]
Generalization
The discussion is taken beyond simple space-time coordinate systems by Brading and Castellani.
Extension to coordinate systems using generalized coordinates underlies the
Hamiltonian
Hamiltonian may refer to:
* Hamiltonian mechanics, a function that represents the total energy of a system
* Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system
** Dyall Hamiltonian, a modified Hamiltonian ...
and
Lagrangian
Lagrangian may refer to:
Mathematics
* Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier
** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
formulations
of
quantum field theory,
classical relativistic mechanics, and
quantum gravity.
Instances
*
International Terrestrial Reference Frame
*
International Celestial Reference Frame
The International Celestial Reference System (ICRS) is the current standard celestial reference system adopted by the International Astronomical Union (IAU). Its origin is at the barycenter of the Solar System, with axes that are intended to "sho ...
* In fluid mechanics,
Lagrangian and Eulerian specification of the flow field
__NOTOC__
In classical field theories, the Lagrangian specification of the flow field is a way of looking at fluid motion where the observer follows an individual fluid parcel as it moves through space and time. Plotting the position of an indi ...
; Other frames
*
Frame fields in general relativity
A frame field in general relativity (also called a tetrad or vierbein) is a set of four pointwise-orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime ...
*
Moving frame in mathematics
See also
*
Analytical mechanics
*
Applied mechanics
Applied mechanics is the branch of science concerned with the motion of any substance that can be experienced or perceived by humans without the help of instruments. In short, when mechanics concepts surpass being theoretical and are applied and e ...
*
Cartesian coordinate system
*
Center-of-momentum frame
In physics, the center-of-momentum frame (also zero-momentum frame or COM frame) of a system is the unique (up to velocity but not origin) inertial frame in which the total momentum of the system vanishes. The ''center of momentum'' of a system is ...
*
Centrifugal force
In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is parall ...
*
Centripetal force
*
Classical mechanics
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
*
Coriolis force
*
Curvilinear coordinates
In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally inve ...
*
Datum reference
A datum reference or just datum (plural: datumsThe plural of this sense of the word '' datum'' is ''datums'' by convention, in contrast with the other senses of the word in which ''data'' usually serves as both the plural form and the mass noun c ...
*
Dynamics (physics)
Dynamics is the branch of classical mechanics that is concerned with the study of forces and their effects on motion. Isaac Newton was the first to formulate the fundamental physical laws that govern dynamics in classical non-relativistic physi ...
*
Frenet–Serret formulas
In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space \mathbb^, or the geometric properties of the curve itself irrespective ...
*
Galilean invariance
Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his ''Dialogue Concerning the Two Chief World Systems'' using th ...
*
General relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
*
Generalized coordinates
In analytical mechanics, generalized coordinates are a set of parameters used to represent the state of a system in a configuration space. These parameters must uniquely define the configuration of the system relative to a reference state.,p. 39 ...
*
Generalized forces Generalized forces find use in Lagrangian mechanics, where they play a role conjugate to generalized coordinates. They are obtained from the applied forces, Fi, i=1,..., n, acting on a system that has its configuration defined in terms of generaliz ...
*
Geodetic reference frame
*
Inertial frame of reference
In classical physics and special relativity, an inertial frame of reference (also called inertial reference frame, inertial frame, inertial space, or Galilean reference frame) is a frame of reference that is not undergoing any acceleration. ...
*
Local coordinates
Local coordinates are the ones used in a ''local coordinate system'' or a ''local coordinate space''. Simple examples:
* Houses. In order to work in a house construction, the measurements are referred to a control arbitrary point that will allow ...
*
Material frame-indifference
*
Rod and frame test The rod and frame test is a psychophysical method of testing perception. It relies on the use of a rod and frame apparatus which uses a rotating rod set inside an individually rotatable drum, allowing an experimenter to vary the participant's frame ...
*
Kinematics
*
Laboratory frame of reference
In theoretical physics, a local reference frame (local frame) refers to a coordinate system or frame of reference that is only expected to function over a small region or a restricted region of space or spacetime.
The term is most often used in t ...
*
Lorentz transformation
In physics, the Lorentz transformations are a six-parameter family of Linear transformation, linear coordinate transformation, transformations from a Frame of Reference, coordinate frame in spacetime to another frame that moves at a constant velo ...
*
Mach's principle
In theoretical physics, particularly in discussions of gravitation theories, Mach's principle (or Mach's conjecture) is the name given by Einstein to an imprecise hypothesis often credited to the physicist and philosopher Ernst Mach. The hypothe ...
*
Orthogonal coordinates In mathematics, orthogonal coordinates are defined as a set of ''d'' coordinates q = (''q''1, ''q''2, ..., ''q'd'') in which the coordinate hypersurfaces all meet at right angles (note: superscripts are indices, not exponents). A coordinate su ...
*
Principle of relativity
*
Quantum reference frame
A quantum reference frame is a reference frame which is treated quantum theoretically. It, like any reference frame, is an abstract coordinate system which defines physical quantities, such as time, position, momentum, spin, and so on. Because it i ...
Notes
References
{{reflist
*