In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a differential operator is an
operator defined as a function of the
differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a
function
Function or functionality may refer to:
Computing
* Function key, a type of key on computer keyboards
* Function model, a structured representation of processes in a system
* Function object or functor or functionoid, a concept of object-oriente ...
and returns another function (in the style of a
higher-order function
In mathematics and computer science, a higher-order function (HOF) is a function that does at least one of the following:
* takes one or more functions as arguments (i.e. a procedural parameter, which is a parameter of a procedure that is itself ...
in
computer science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical discipli ...
).
This article considers mainly
linear
Linearity is the property of a mathematical relationship (''function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear r ...
differential operators, which are the most common type. However, non-linear differential operators also exist, such as the
Schwarzian derivative
In mathematics, the Schwarzian derivative is an operator similar to the derivative which is invariant under Möbius transformations. Thus, it occurs in the theory of the complex projective line, and in particular, in the theory of modular forms an ...
.
Definition
An order-
linear differential operator is a map
from a
function space
In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set into a vect ...
to another function space
that can be written as:
where
is a
multi-index
Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices. ...
of non-negative
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s,
, and for each
,
is a function on some open domain in ''n''-dimensional space. The operator
is interpreted as
Thus for a function
:
A differential operator acting on two functions
is also called a ''bidifferential operator''.
Notations
The most common differential operator is the action of taking the
derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. F ...
.
Common notations for taking the first derivative with respect to a variable ''x'' include:
:
,
,
and
.
When taking higher, ''n''th order derivatives, the operator may be written:
:
,
,
, or
.
The derivative of a function ''f'' of an
argument
An argument is a statement or group of statements called premises intended to determine the degree of truth or acceptability of another statement called conclusion. Arguments can be studied from three main perspectives: the logical, the dialectic ...
''x'' is sometimes given as either of the following:
:
:
The ''D'' notation's use and creation is credited to
Oliver Heaviside
Oliver Heaviside FRS (; 18 May 1850 – 3 February 1925) was an English self-taught mathematician and physicist who invented a new technique for solving differential equations (equivalent to the Laplace transform), independently developed vec ...
, who considered differential operators of the form
:
in his study of
differential equation
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
s.
One of the most frequently seen differential operators is the
Laplacian operator
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the ...
, defined by
:
Another differential operator is the Θ operator, or
theta operator In mathematics, the theta operator is a differential operator defined by
: \theta = z .
This is sometimes also called the homogeneity operator, because its eigenfunctions are the monomials in ''z'':
:\theta (z^k) = k z^k,\quad k=0,1,2,\dots
In ...
, defined by
:
This is sometimes also called the homogeneity operator, because its
eigenfunction
In mathematics, an eigenfunction of a linear operator ''D'' defined on some function space is any non-zero function f in that space that, when acted upon by ''D'', is only multiplied by some scaling factor called an eigenvalue. As an equation, th ...
s are the
monomial
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered:
# A monomial, also called power product, is a product of powers of variables with nonnegative integer exponent ...
s in ''z'':
In ''n'' variables the homogeneity operator is given by
As in one variable, the
eigenspace
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted b ...
s of Θ are the spaces of
homogeneous function
In mathematics, a homogeneous function is a function of several variables such that, if all its arguments are multiplied by a scalar, then its value is multiplied by some power of this scalar, called the degree of homogeneity, or simply the ''deg ...
s. (
Euler's homogeneous function theorem
In mathematics, a homogeneous function is a function of several variables such that, if all its arguments are multiplied by a scalar, then its value is multiplied by some power of this scalar, called the degree of homogeneity, or simply the ''deg ...
)
In writing, following common mathematical convention, the argument of a differential operator is usually placed on the right side of the operator itself. Sometimes an alternative notation is used: The result of applying the operator to the function on the left side of the operator and on the right side of the operator, and the difference obtained when applying the differential operator to the functions on both sides, are denoted by arrows as follows:
:
:
:
Such a bidirectional-arrow notation is frequently used for describing the
probability current
In quantum mechanics, the probability current (sometimes called probability flux) is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is th ...
of quantum mechanics.
Del
The differential operator del, also called ''nabla'', is an important
vector
Vector most often refers to:
*Euclidean vector, a quantity with a magnitude and a direction
*Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism
Vector may also refer to:
Mathematic ...
differential operator. It appears frequently in
physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
in places like the differential form of
Maxwell's equations
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits.
...
. In three-dimensional
Cartesian coordinates
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
, del is defined as
Del defines the
gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gradi ...
, and is used to calculate the
curl
cURL (pronounced like "curl", UK: , US: ) is a computer software project providing a library (libcurl) and command-line tool (curl) for transferring data using various network protocols. The name stands for "Client URL".
History
cURL was fi ...
,
divergence
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the ...
, and
Laplacian
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the ...
of various objects.
Adjoint of an operator
Given a linear differential operator
the
adjoint
In mathematics, the term ''adjoint'' applies in several situations. Several of these share a similar formalism: if ''A'' is adjoint to ''B'', then there is typically some formula of the type
:(''Ax'', ''y'') = (''x'', ''By'').
Specifically, adjoin ...
of this operator is defined as the operator
such that
where the notation
is used for the
scalar product
In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an algebra ...
or
inner product
In mathematics, an inner product space (or, rarely, a Hausdorff space, Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation (mathematics), operation called an inner product. The inner product of two ve ...
. This definition therefore depends on the definition of the scalar product.
Formal adjoint in one variable
In the functional space of
square-integrable function
In mathematics, a square-integrable function, also called a quadratically integrable function or L^2 function or square-summable function, is a real- or complex-valued measurable function for which the integral of the square of the absolute value i ...
s on a
real
Real may refer to:
Currencies
* Brazilian real (R$)
* Central American Republic real
* Mexican real
* Portuguese real
* Spanish real
* Spanish colonial real
Music Albums
* ''Real'' (L'Arc-en-Ciel album) (2000)
* ''Real'' (Bright album) (2010)
...
interval , the scalar product is defined by
where the line over ''f''(''x'') denotes the
complex conjugate
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if a and b are real, then) the complex conjugate of a + bi is equal to a - ...
of ''f''(''x''). If one moreover adds the condition that ''f'' or ''g'' vanishes as
and
, one can also define the adjoint of ''T'' by
This formula does not explicitly depend on the definition of the scalar product. It is therefore sometimes chosen as a definition of the adjoint operator. When
is defined according to this formula, it is called the formal adjoint of ''T''.
A (formally)
self-adjoint
In mathematics, and more specifically in abstract algebra, an element ''x'' of a *-algebra is self-adjoint if x^*=x. A self-adjoint element is also Hermitian, though the reverse doesn't necessarily hold.
A collection ''C'' of elements of a sta ...
operator is an operator equal to its own (formal) adjoint.
Several variables
If Ω is a domain in R
''n'', and ''P'' a differential operator on Ω, then the adjoint of ''P'' is defined in
''L''2(Ω) by duality in the analogous manner:
:
for all smooth ''L''
2 functions ''f'', ''g''. Since smooth functions are dense in ''L''
2, this defines the adjoint on a dense subset of ''L''
2: P
* is a
densely defined operator
In mathematics – specifically, in operator theory – a densely defined operator or partially defined operator is a type of partially defined function. In a topological sense, it is a linear operator that is defined "almost everywhere". ...
.
Example
The
Sturm–Liouville operator is a well-known example of a formal self-adjoint operator. This second-order linear differential operator ''L'' can be written in the form
:
This property can be proven using the formal adjoint definition above.
:
This operator is central to
Sturm–Liouville theory In mathematics and its applications, classical Sturm–Liouville theory is the theory of ''real'' second-order ''linear'' ordinary differential equations of the form:
for given coefficient functions , , and , an unknown function ''y = y''(''x'') ...
where the
eigenfunctions
In mathematics, an eigenfunction of a linear operator ''D'' defined on some function space is any non-zero function f in that space that, when acted upon by ''D'', is only multiplied by some scaling factor called an eigenvalue. As an equation, th ...
(analogues to
eigenvectors
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted b ...
) of this operator are considered.
Properties of differential operators
Differentiation is
linear
Linearity is the property of a mathematical relationship (''function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear r ...
, i.e.
:
:
where ''f'' and ''g'' are functions, and ''a'' is a constant.
Any
polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exa ...
in ''D'' with function coefficients is also a differential operator. We may also
compose
Composition or Compositions may refer to:
Arts and literature
*Composition (dance), practice and teaching of choreography
*Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include v ...
differential operators by the rule
:
Some care is then required: firstly any function coefficients in the operator ''D''
2 must be
differentiable
In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its ...
as many times as the application of ''D''
1 requires. To get a
ring
Ring may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
:(hence) to initiate a telephone connection
Arts, entertainment and media Film and ...
of such operators we must assume derivatives of all orders of the coefficients used. Secondly, this ring will not be
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name o ...
: an operator ''gD'' isn't the same in general as ''Dg''. For example we have the relation basic in
quantum mechanics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
:
:
The subring of operators that are polynomials in ''D'' with
constant coefficients
In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form
:a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^ = b( ...
is, by contrast, commutative. It can be characterised another way: it consists of the translation-invariant operators.
The differential operators also obey the
shift theorem In mathematics, the (exponential) shift theorem is a theorem about polynomial differential operators (''D''-operators) and exponential functions. It permits one to eliminate, in certain cases, the exponential from under the ''D''-operators.
Statem ...
.
Several variables
The same constructions can be carried out with
partial derivative
In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Part ...
s, differentiation with respect to different variables giving rise to operators that commute (see
symmetry of second derivatives
In mathematics, the symmetry of second derivatives (also called the equality of mixed partials) refers to the possibility of interchanging the order of taking partial derivatives of a function
:f\left(x_1,\, x_2,\, \ldots,\, x_n\right)
of ''n'' ...
).
Ring of polynomial differential operators
Ring of univariate polynomial differential operators
If ''R'' is a ring, let
be the
non-commutative polynomial ring
In mathematics, especially in the area of abstract algebra known as ring theory, a free algebra is the noncommutative analogue of a polynomial ring since its elements may be described as "polynomials" with non-commuting variables. Likewise, the po ...
over ''R'' in the variables ''D'' and ''X'', and ''I'' the two-sided
ideal
Ideal may refer to:
Philosophy
* Ideal (ethics), values that one actively pursues as goals
* Platonic ideal, a philosophical idea of trueness of form, associated with Plato
Mathematics
* Ideal (ring theory), special subsets of a ring considere ...
generated by ''DX'' − ''XD'' − 1. Then the ring of univariate polynomial differential operators over ''R'' is the
quotient ring
In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. ...
. This is a
simple ring In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field.
The center of a simple ...
. Every element can be written in a unique way as a ''R''-linear combination of monomials of the form
. It supports an analogue of
Euclidean division of polynomials
In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common di ...
.
Differential modules over