A feedforward neural network (FNN) is an
artificial neural network
Artificial neural networks (ANNs), usually simply called neural networks (NNs) or neural nets, are computing systems inspired by the biological neural networks that constitute animal brains.
An ANN is based on a collection of connected unit ...
wherein connections between the nodes do ''not'' form a cycle.
As such, it is different from its descendant:
recurrent neural networks.
The feedforward
neural network
A neural network is a network or circuit of biological neurons, or, in a modern sense, an artificial neural network, composed of artificial neurons or nodes. Thus, a neural network is either a biological neural network, made up of biological ...
was the first and simplest type of artificial neural network devised. In this network, the information moves in only one direction—forward—from the input nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or loops in the network.
Single-layer perceptron
The simplest kind of neural network is a ''single-layer perceptron'' network, which consists of a single layer of output nodes; the inputs are fed directly to the outputs via a series of weights. The sum of the products of the weights and the inputs is calculated in each node, and if the value is above some threshold (typically 0) the neuron fires and takes the activated value (typically 1); otherwise it takes the deactivated value (typically -1). Neurons with this kind of
activation function are also called ''
artificial neurons'' or ''linear threshold units''. In the literature the term ''
perceptron'' often refers to networks consisting of just one of these units. A similar neuron was described by
Warren McCulloch and
Walter Pitts in the 1940s.
A perceptron can be created using any values for the activated and deactivated states as long as the threshold value lies between the two.
Perceptrons can be trained by a simple learning algorithm that is usually called the ''
delta rule''. It calculates the errors between calculated output and sample output data, and uses this to create an adjustment to the weights, thus implementing a form of
gradient descent.
Single-layer perceptrons are only capable of learning
linearly separable
In Euclidean geometry, linear separability is a property of two sets of points. This is most easily visualized in two dimensions (the Euclidean plane) by thinking of one set of points as being colored blue and the other set of points as being colo ...
patterns; in 1969 in a famous
monograph
A monograph is a specialist work of writing (in contrast to reference works) or exhibition on a single subject or an aspect of a subject, often by a single author or artist, and usually on a scholarly subject.
In library cataloging, ''monograph ...
titled ''
Perceptrons'',
Marvin Minsky
Marvin Lee Minsky (August 9, 1927 – January 24, 2016) was an American cognitive and computer scientist concerned largely with research of artificial intelligence (AI), co-founder of the Massachusetts Institute of Technology's AI laboratory, an ...
and
Seymour Papert showed that it was impossible for a single-layer perceptron network to learn an
XOR function (nonetheless, it was known that multi-layer perceptrons are capable of producing any possible boolean function).
Although a single threshold unit is quite limited in its computational power, it has been shown that networks of parallel threshold units can
approximate any continuous function from a compact interval of the real numbers into the interval
1,1 This result can be found in Peter Auer,
Harald Burgsteiner and
Wolfgang Maass "A learning rule for very simple universal approximators consisting of a single layer of perceptrons".
A single-layer neural network can compute a continuous output instead of a
step function. A common choice is the so-called
logistic function
A logistic function or logistic curve is a common S-shaped curve (sigmoid curve) with equation
f(x) = \frac,
where
For values of x in the domain of real numbers from -\infty to +\infty, the S-curve shown on the right is obtained, with the ...
:
:
With this choice, the single-layer network is identical to the
logistic regression
In statistics, the logistic model (or logit model) is a statistical model that models the probability of an event taking place by having the log-odds for the event be a linear function (calculus), linear combination of one or more independent var ...
model, widely used in
statistical model
A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of Sample (statistics), sample data (and similar data from a larger Statistical population, population). A statistical model repres ...
ing. The
logistic function
A logistic function or logistic curve is a common S-shaped curve (sigmoid curve) with equation
f(x) = \frac,
where
For values of x in the domain of real numbers from -\infty to +\infty, the S-curve shown on the right is obtained, with the ...
is one of the family of functions called
sigmoid function
A sigmoid function is a mathematical function having a characteristic "S"-shaped curve or sigmoid curve.
A common example of a sigmoid function is the logistic function shown in the first figure and defined by the formula:
:S(x) = \frac = \f ...
s because their S-shaped graphs resemble the final-letter lower case of the Greek letter
Sigma
Sigma (; uppercase Σ, lowercase σ, lowercase in word-final position ς; grc-gre, σίγμα) is the eighteenth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 200. In general mathematics, uppercase Σ is used as ...
. It has a continuous derivative, which allows it to be used in
backpropagation. This function is also preferred because its derivative is easily calculated:
:
.
(The fact that
satisfies the differential equation above can easily be shown by applying the
chain rule.)
If single-layer neural network activation function is
modulo
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another (called the '' modulus'' of the operation).
Given two positive numbers and , modulo (often abbreviated as ) is t ...
1, then this network can solve XOR problem with a single neuron.
:
:
Multi-layer perceptron
This class of networks consists of multiple layers of computational units, usually interconnected in a feed-forward way. Each neuron in one layer has directed connections to the neurons of the subsequent layer. In many applications the units of these networks apply a ''
sigmoid function
A sigmoid function is a mathematical function having a characteristic "S"-shaped curve or sigmoid curve.
A common example of a sigmoid function is the logistic function shown in the first figure and defined by the formula:
:S(x) = \frac = \f ...
'' as an activation function. However sigmoidal activation functions have very small derivative values outside a small range and do not work well in deep neural networks due to the
vanishing gradient problem.
The ''
universal approximation theorem'' for neural networks states that every continuous function that maps intervals of real numbers to some output interval of real numbers can be approximated arbitrarily closely by a multi-layer perceptron with just one hidden layer. This result holds for a wide range of activation functions, e.g. for the sigmoidal functions.
Multi-layer networks use a variety of learning techniques, the most popular being ''
back-propagation
In machine learning, backpropagation (backprop, BP) is a widely used algorithm for training feedforward artificial neural networks. Generalizations of backpropagation exist for other artificial neural networks (ANNs), and for functions gener ...
''. Here, the output values are compared with the correct answer to compute the value of some predefined error-function. By various techniques, the error is then fed back through the network. Using this information, the algorithm adjusts the weights of each connection in order to reduce the value of the error function by some small amount. After repeating this process for a sufficiently large number of training cycles, the network will usually converge to some state where the error of the calculations is small. In this case, one would say that the network has ''learned'' a certain target function. To adjust weights properly, one applies a general method for non-linear
optimization that is called
gradient descent. For this, the network calculates the derivative of the error function with respect to the network weights, and changes the weights such that the error decreases (thus going downhill on the surface of the error function). For this reason, back-propagation can only be applied on networks with differentiable activation functions.
In general, the problem of teaching a network to perform well, even on samples that were not used as training samples, is a quite subtle issue that requires additional techniques. This is especially important for cases where only very limited numbers of training samples are available.
The danger is that the network
overfits the training data and fails to capture the true statistical process generating the data.
Computational learning theory is concerned with training classifiers on a limited amount of data. In the context of neural networks a simple
heuristic
A heuristic (; ), or heuristic technique, is any approach to problem solving or self-discovery that employs a practical method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediate, ...
, called
early stopping In machine learning, early stopping is a form of regularization used to avoid overfitting when training a learner with an iterative method, such as gradient descent. Such methods update the learner so as to make it better fit the training data with ...
, often ensures that the network will generalize well to examples not in the training set.
Other typical problems of the back-propagation algorithm are the speed of convergence and the possibility of ending up in a
local minimum
In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ran ...
of the error function. Today, there are practical methods that make back-propagation in multi-layer perceptrons the tool of choice for many
machine learning
Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence.
Machine ...
tasks.
One also can use a series of independent neural networks moderated by some intermediary, a similar behavior that happens in brain. These neurons can perform separably and handle a large task, and the results can be finally combined.
Other feedforward networks
More generally, any
directed acyclic graph
In mathematics, particularly graph theory, and computer science, a directed acyclic graph (DAG) is a directed graph with no directed cycles. That is, it consists of vertices and edges (also called ''arcs''), with each edge directed from one ve ...
may be used for a feedforward network, with some nodes (with no parents) designated as inputs, and some nodes (with no children) designated as outputs. These can be viewed as multilayer networks where some edges skip layers, either counting layers backwards from the outputs or forwards from the inputs. Various activation functions can be used, and there can be relations between weights, as in
convolutional neural network
In deep learning, a convolutional neural network (CNN, or ConvNet) is a class of artificial neural network (ANN), most commonly applied to analyze visual imagery. CNNs are also known as Shift Invariant or Space Invariant Artificial Neural Netwo ...
s.
Examples of other feedforward networks include
radial basis function network
In the field of mathematical modeling, a radial basis function network is an artificial neural network that uses radial basis functions as activation functions. The output of the network is a linear combination of radial basis functions of the inp ...
s, which use a different activation function.
Sometimes ''multi-layer perceptron'' is used loosely to refer to any feedforward neural network, while in other cases it is restricted to specific ones (e.g., with specific activation functions, or with fully connected layers, or trained by the perceptron algorithm).
See also
*
Hopfield network
*
Convolutional neural network
In deep learning, a convolutional neural network (CNN, or ConvNet) is a class of artificial neural network (ANN), most commonly applied to analyze visual imagery. CNNs are also known as Shift Invariant or Space Invariant Artificial Neural Netwo ...
*
Feed-forward
*
Backpropagation
*
Rprop
Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Bra ...
References
External links
Feedforward neural networks tutorialFeedforward Neural Network: ExampleFeedforward Neural Networks: An Introduction
{{Differentiable computing
Neural network architectures