HOME

TheInfoList



OR:

Endoplasmic-reticulum-associated protein degradation (ERAD) designates a cellular pathway which targets misfolded proteins of the
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ...
for
ubiquitination Ubiquitin is a small (8.6 kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 1980s. Fo ...
and subsequent degradation by a protein-degrading complex, called the
proteasome Proteasomes are protein complexes which degrade unneeded or damaged proteins by proteolysis, a chemical reaction that breaks peptide bonds. Enzymes that help such reactions are called proteases. Proteasomes are part of a major mechanism by whi ...
.


Mechanism

The process of ERAD can be divided into three steps:


Recognition of misfolded or mutated proteins in the endoplasmic reticulum

The recognition of misfolded or mutated proteins depends on the detection of substructures within proteins such as exposed
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, ...
regions, unpaired
cysteine Cysteine (symbol Cys or C; ) is a semiessential proteinogenic amino acid with the formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. When present as a deprotonated catalytic residue, some ...
residues and immature
glycan The terms glycans and polysaccharides are defined by IUPAC as synonyms meaning "compounds consisting of a large number of monosaccharides linked glycosidically". However, in practice the term glycan may also be used to refer to the carbohydrate ...
s. In
mammalian Mammals () are a group of vertebrate animals constituting the class Mammalia (), characterized by the presence of mammary glands which in females produce milk for feeding (nursing) their young, a neocortex (a region of the brain), fu ...
cells for example, there exists a mechanism called glycan processing. In this mechanism, the
lectin Lectins are carbohydrate-binding proteins that are highly specific for sugar groups that are part of other molecules, so cause agglutination of particular cells or precipitation of glycoconjugates and polysaccharides. Lectins have a role in rec ...
-type chaperones
calnexin Calnexin (CNX) is 67kDaintegral protein (that appears variously as a 90kDa, 80kDa, or 75kDa band on western blotting depending on the source of the antibody) of the endoplasmic reticulum (ER). It consists of a large (50 kDa) N-terminal calcium- ...
/
calreticulin Calreticulin also known as calregulin, CRP55, CaBP3, calsequestrin-like protein, and endoplasmic reticulum resident protein 60 (ERp60) is a protein that in humans is encoded by the ''CALR'' gene. Calreticulin is a multifunctional soluble prote ...
(CNX/CRT) provide immature glycoproteins the opportunity to reach their native conformation. They can do this by way of reglucosylating these glycoproteins by an enzyme called UDP-
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
-
glycoprotein Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glyco ...
glucosyltransferase Glucosyltransferases are a type of glycosyltransferase that enable the transfer of glucose. Examples include: * glycogen synthase * glycogen phosphorylase Glycogen phosphorylase is one of the phosphorylase enzymes (). Glycogen phosphorylase cat ...
also known as UGGT. Terminally misfolded proteins, however, must be extracted from CNX/CRT. This is carried out by members of the EDEM (ER degradation-enhancing α-mannosidase-like protein) family (EDEM1-3) and ER mannosidase I. This mannosidase removes one
mannose Mannose is a sugar monomer of the aldohexose series of carbohydrates. It is a C-2 epimer of glucose. Mannose is important in human metabolism, especially in the glycosylation of certain proteins. Several congenital disorders of glycosylat ...
residue from the glycoprotein and the latter is recognized by EDEM. Eventually EDEM will target the misfolded glycoproteins for degradation by facilitating binding of ERAD lectins OS9 and XTP3-B.


Retro-translocation into the cytosol

Because the ubiquitin–proteasome system (UPS) is located in the cytosol, terminally misfolded proteins have to be transported from the endoplasmic reticulum back into cytoplasm. Most evidence suggest that the Hrd1 E3 ubiquitin-protein ligase can function as a retrotranslocon or dislocon to transport substrates into the cytosol. Hrd1 is not required for all ERAD events, so it is likely that other proteins contribute to this process. For example, glycosylated substrates are recognized by the E3 Fbs2 lectin. Further, this translocation requires a driving force that determines the direction of transport. Since polyubiquitination is essential for the export of substrates, it is widely thought that this driving force is provided by ubiquitin-binding factors. One of these ubiquitin-binding factors is the Cdc48p-Npl4p-Ufd1p complex in yeast. Humans have the homolog of Cdc48p known as valosin-containing protein (VCP/p97) with the same function as Cdc48p. VCP/p97 transports substrates from the endoplasmic reticulum to the cytoplasm with its ATPase activity.


Ubiquitin-dependent degradation by the proteasome

The ubiquitination of terminally misfolded proteins is caused by a cascade of enzymatic reactions. The first of these reactions takes place when the ubiquitin-activating enzyme E1 hydrolyses ATP and forms a high-energy thioester linkage between a cysteine residue in its active site and the
C-terminus The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein i ...
of ubiquitin. The resulting activated ubiquitin is then passed to E2, which is a
ubiquitin-conjugating enzyme Ubiquitin-conjugating enzymes, also known as E2 enzymes and more rarely as ''ubiquitin-carrier enzymes'', perform the second step in the ubiquitination reaction that targets a protein for degradation via the proteasome. The ubiquitination process ...
. Another group of enzymes, more specifically ubiquitin protein ligases called E3, bind to the misfolded protein. Next they align the protein and E2, thus facilitating the attachment of ubiquitin to lysine residues of the misfolded protein. Following successive addition of ubiquitin molecules to lysine residues of the previously attached ubiquitin, a polyubiquitin chain is formed. A polyubiquitinated protein is produced and this is recognized by specific subunits in the 19S capping complexes of the 26S proteasome. Hereafter, the
polypeptide chain Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A ...
is fed into the central chamber of the 20S core region that contains the proteolytically active sites. Ubiquitin is cleaved before terminal digestion by deubiquitinating enzymes. This third step is very closely associated with the second one, since ubiquitination takes place during the translocation event. However, the proteasomal degradation takes place in the cytoplasm.


ERAD ubiquitination machinery

The ER membrane anchored RING finger containing ubiquitin ligases Hrd1 and Doa10 are the major mediators of substrate ubiquitination during ERAD. The tail anchored
membrane protein Membrane proteins are common proteins that are part of, or interact with, biological membranes. Membrane proteins fall into several broad categories depending on their location. Integral membrane proteins are a permanent part of a cell membrane ...
Ubc6 as well as Ubc1 and the Cue1 dependent membrane bound Ubc7 are the ubiquitin conjugating enzymes involved in ERAD.


Checkpoints

As the variation of ERAD-substrates is enormous, several variations of the ERAD mechanism have been proposed. Indeed, it was confirmed that
soluble In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
,
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. ...
and
transmembrane A transmembrane protein (TP) is a type of integral membrane protein that spans the entirety of the cell membrane. Many transmembrane proteins function as gateways to permit the transport of specific substances across the membrane. They frequent ...
proteins were recognized by different mechanisms. This led to the identification of 3 different pathways that constitute in fact 3 checkpoints. *The first checkpoint is called ERAD-C and monitors the folding state of the
cytosolic The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells (intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondrio ...
domains of membrane proteins. If defects are detected in the cytosolic domains, this checkpoint will remove the misfolded protein. *When the cytosolic domains are found to be correctly folded, the membrane protein will pass to a second checkpoint where the luminal domains are monitored. This second checkpoint is called the ERAD-L pathway. Not only membrane proteins surviving the first checkpoint are controlled for their luminal domains, also soluble proteins are inspected by this pathway as they are entirely luminal and thus bypass the first checkpoint. If a lesion in the luminal domains is detected, the involved protein is processed for ERAD using a set of factors including the vesicular trafficking machinery that transports misfolded proteins from the endoplasmic reticulum to the
Golgi apparatus The Golgi apparatus (), also known as the Golgi complex, Golgi body, or simply the Golgi, is an organelle found in most eukaryotic cells. Part of the endomembrane system in the cytoplasm, it packages proteins into membrane-bound vesicles i ...
. *Also a third checkpoint has been described that relies on the inspection of transmembrane domains of proteins. It is called the ERAD-M pathway but it is not very clear in which order it has to be placed with regard to the two previously described pathways.


Diseases associated with ERAD-malfunctioning

As ERAD is a central element of the secretory pathway, disorders in its activity can cause a range of human diseases. These disorders can be classified into two groups. The first group is the result of
mutations In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
in ERAD components, which subsequently lose their function. By losing their function, these components are no longer able to stabilize aberrant proteins, so that the latter accumulate and damage the cell. An example of a disease caused by this first group of disorders is
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms usually emerge slowly, and as the disease worsens, non-motor symptoms beco ...
. It is caused by a mutation in the parkin
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
. Parkin is a protein that functions in complex with CHIP as a ubiquitin ligase and overcomes the accumulation and aggregation of misfolded proteins. here are numerous theories addressing the causes of Parkinson's disease, besides the one presented here. Many of these can be found in the section of Wikipedia devoted to Parkinson's disease. In contrast to this first group of disorders, the second group is caused by premature degradation of secretory or membrane proteins. In this way, these proteins aren't able to be deployed to distal compartments, as is the case in
cystic fibrosis Cystic fibrosis (CF) is a rare genetic disorder that affects mostly the lungs, but also the pancreas, liver, kidneys, and intestine. Long-term issues include difficulty breathing and coughing up mucus as a result of frequent lung infections. Ot ...
.


ERAD and HIV

As described before, the addition of polyubiquitin chains to ERAD substrates is crucial for their export. HIV uses an efficient mechanism to dislocate a single-membrane-spanning host protein,
CD4 In molecular biology, CD4 (cluster of differentiation 4) is a glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). CD4 is found on the surface of immune cells such as T helper cells, monocytes, macrophages, and dendritic ce ...
, from the ER and submits it to ERAD. The Vpu protein of HIV-1 is a protein on the ER membrane and targets newly made CD4 in the endoplasmic reticulum for degradation by cytosolic proteasomes. Vpu only utilizes part of the ERAD process to degrade CD4. CD4 is normally a stable protein and is not likely to be a target for ERAD. However, HIV produces the membrane protein Vpu that binds to CD4. The Vpu protein mainly retains the CD4 in the ER by SCFβ-TrCP-dependent ubiquitination of the CD4 cytosolic tail and transmembrane domain (TMD) interactions. The CD4 Gly415 is a contributor to CD4-Vpu interactions, several TMD-mediated mechanisms by HIV-1 Vpu are necessary to downregulate CD4 and thus promote viral pathogenesis. CD4 retained in the ER will be a target for a variant ERAD pathway rather than predominantly appearing at the plasma membrane without the presence of Vpu through the RESET pathway. Vpu mediates the CD4 retention in the ER and the addition of degradation. As Vpu is phosphorylated, it mimics substrates for the E3 complex SCFβTrCP. In cells that are infected with HIV, SCFβTrCP interacts with Vpu and ubiquitinates CD4, which is subsequently degraded by the proteasome. Vpu itself escapes from the degradation.


Questions

The big open questions related to ERAD are: * How are misfolded proteins more specifically recognized? * How ERAD substrates/luminal substrates and membrane substrates are differentiated for retrotranslocation? * Is the retrotranslocation conserved across the yeast to human system? * What is the channel for the retrotranslocation of luminal ER proteins? * Which E3 ligase finally tags the proteins for the proteasomal degradation?


See also

*
Endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ...
*
JUNQ and IPOD JUNQ and IPOD are types of cytosolic protein inclusion bodies in eukaryotes. Neurodegenerative diseases, such as Parkinson's, Alzheimer's, and Huntington's, are associated and correlated with protein aggregation and accumulation of misfolded pro ...
*
Oxidative folding Oxidative protein folding is a process that is responsible for the formation of disulfide bonds between cysteine residues in proteins. The driving force behind this process is a redox reaction, in which electrons pass between several proteins and f ...
*
Proteasome Proteasomes are protein complexes which degrade unneeded or damaged proteins by proteolysis, a chemical reaction that breaks peptide bonds. Enzymes that help such reactions are called proteases. Proteasomes are part of a major mechanism by whi ...
*
Protein folding Protein folding is the physical process by which a protein chain is translated to its native three-dimensional structure, typically a "folded" conformation by which the protein becomes biologically functional. Via an expeditious and reproduc ...
*
Ubiquitination Ubiquitin is a small (8.6 kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 1980s. Fo ...


References


Further reading

* * * * * * * {{refend Cellular processes Protein folding