Entropy As An Arrow Of Time
   HOME

TheInfoList



OR:

Entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynam ...
is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an
arrow of time The arrow of time, also called time's arrow, is the concept positing the "one-way direction" or "asymmetry" of time. It was developed in 1927 by the British astrophysicist Arthur Eddington, and is an unsolved general physics question. This ...
. As one goes "forward" in time, the
second law of thermodynamics The second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unles ...
says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from the future. In thermodynamic systems that are not isolated, entropy can decrease with time, for example
living systems Living systems are open self-organizing life forms that interact with their environment. These systems are maintained by flows of information, energy and matter. In the last few decades, some scientists have proposed that a general living syst ...
where local entropy is reduced at the expense of an environmental increase (resulting in a net increase in entropy), the formation of typical crystals, the workings of a refrigerator and within living organisms. Much like
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
, despite being an abstract concept, everyone has an intuitive sense of the effects of entropy. For example, it is often very easy to tell the difference between a video being played forwards or backwards. A video may depict a wood fire that melts a nearby ice block, played in reverse it would show that a puddle of water turned a cloud of smoke into unburnt wood and froze itself in the process. Surprisingly, in either case the vast majority of the laws of physics are not broken by these processes, a notable exception being the
second law of thermodynamics The second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unles ...
. When a law of physics applies equally when time is reversed, it is said to show
T-symmetry T-symmetry or time reversal symmetry is the theoretical symmetry of physical laws under the transformation of time reversal, : T: t \mapsto -t. Since the second law of thermodynamics states that entropy increases as time flows toward the futur ...
; in this case, entropy is what allows one to decide if the video described above is playing forwards or in reverse as intuitively we identify that only when played forwards the entropy of the scene is increasing. Because of the second law of thermodynamics, entropy prevents macroscopic processes showing T-symmetry. When studying at a microscopic scale, the above judgements cannot be made. Watching a single smoke particle buffeted by air, it would not be clear if a video was playing forwards or in reverse, and, in fact, it would not be possible as the laws which apply show T-symmetry. As it drifts left or right, ''qualitatively'' it looks no different. It is only when the gas is studied at a
macroscopic scale The macroscopic scale is the length scale on which objects or phenomena are large enough to be visible with the naked eye, without magnifying optical instruments. It is the opposite of microscopic. Overview When applied to physical phenomena a ...
that the effects of entropy become noticeable. On average it would be expected that the smoke particles around a struck match would drift away from each other, diffusing throughout the available space. It would be an astronomically improbable event for all the particles to cluster together, yet the movement of any one smoke particle cannot be predicted. By contrast, certain subatomic interactions involving the
weak nuclear force In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction ...
violate the conservation of parity, but only very rarely. According to the
CPT theorem Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and ...
, this means they should also be time irreversible, and so establish an
arrow of time The arrow of time, also called time's arrow, is the concept positing the "one-way direction" or "asymmetry" of time. It was developed in 1927 by the British astrophysicist Arthur Eddington, and is an unsolved general physics question. This ...
. This, however, is neither linked to the thermodynamic arrow of time, nor has anything to do with the daily experience of time irreversibility.


Overview

The
Second Law of Thermodynamics The second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unles ...
allows for the entropy to ''remain the same'' regardless of the direction of time. If the entropy is constant in either direction of time, there would be no preferred direction. However, the entropy can only be a constant if the system is in the highest possible state of disorder, such as a gas that always was, and always will be, uniformly spread out in its container. The existence of a thermodynamic arrow of time implies that the system is highly ordered in one time direction only, which would by definition be the "past". Thus this law is about the boundary conditions rather than the
equations of motion In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.''Encyclopaedia of Physics'' (second Edition), R.G. Lerner, G.L. Trigg, VHC Publishers, 1991, ISBN (Ver ...
. The Second Law of Thermodynamics is statistical in nature, and therefore its reliability arises from the huge number of particles present in macroscopic systems. It is not impossible, in principle, for all 6 × 1023 atoms in a
mole Mole (or Molé) may refer to: Animals * Mole (animal) or "true mole", mammals in the family Talpidae, found in Eurasia and North America * Golden moles, southern African mammals in the family Chrysochloridae, similar to but unrelated to Talpida ...
of a gas to spontaneously migrate to one half of a container; it is only ''fantastically'' unlikely—so unlikely that no macroscopic violation of the Second Law has ever been observed. The thermodynamic arrow is often linked to the cosmological arrow of time, because it is ultimately about the boundary conditions of the early universe. According to the Big Bang theory, the
Universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. ...
was initially very hot with energy distributed uniformly. For a system in which
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
is important, such as the universe, this is a low-entropy state (compared to a high-entropy state of having all matter collapsed into black holes, a state to which the system may eventually evolve). As the Universe grows, its temperature drops, which leaves less energy er unit volume of spaceavailable to perform work in the future than was available in the past. Additionally,
perturbation Perturbation or perturb may refer to: * Perturbation theory, mathematical methods that give approximate solutions to problems that cannot be solved exactly * Perturbation (geology), changes in the nature of alluvial deposits over time * Perturbat ...
s in the energy density grow (eventually forming galaxies and stars). Thus the Universe itself has a well-defined thermodynamic arrow of time. But this does not address the question of why the initial state of the universe was that of low entropy. If cosmic expansion were to halt and reverse due to gravity, the temperature of the Universe would once again grow hotter, but its entropy would also continue to increase due to the continued growth of perturbations and the eventual black hole formation, until the latter stages of the Big Crunch when entropy would be lower than now.


An example of apparent irreversibility

Consider the situation in which a large container is filled with two separated liquids, for example a dye on one side and water on the other. With no barrier between the two liquids, the random jostling of their
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
s will result in them becoming more mixed as time passes. However, if the dye and water are mixed then one does not expect them to separate out again when left to themselves. A movie of the mixing would seem realistic when played forwards, but unrealistic when played backwards. If the large container is observed early on in the mixing process, it might be found only partially mixed. It would be reasonable to conclude that, without outside intervention, the liquid reached this state because it was more ordered in the past, when there was greater separation, and will be more disordered, or mixed, in the future. Now imagine that the experiment is repeated, this time with only a few molecules, perhaps ten, in a very small container. One can easily imagine that by watching the random jostling of the molecules it might occur — by chance alone — that the molecules became neatly segregated, with all dye molecules on one side and all water molecules on the other. That this can be expected to occur from time to time can be concluded from the
fluctuation theorem The fluctuation theorem (FT), which originated from statistical mechanics, deals with the relative probability that the entropy of a system which is currently away from thermodynamic equilibrium (i.e., maximum entropy) will increase or decrease ov ...
; thus it is not impossible for the molecules to segregate themselves. However, for a large number of molecules it is so unlikely that one would have to wait, on average, many times longer than the current age of the universe for it to occur. Thus a movie that showed a large number of molecules segregating themselves as described above would appear unrealistic and one would be inclined to say that the movie was being played in reverse. See Boltzmann's Second Law as a law of disorder.


Mathematics of the arrow

The mathematics behind the ''arrow of time'',
entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynam ...
, and basis of the
second law of thermodynamics The second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unles ...
derive from the following set-up, as detailed by Carnot (1824), Clapeyron (1832), and Clausius (1854): Here, as common experience demonstrates, when a hot body ''T1'', such as a furnace, is put into physical contact, such as being connected via a body of fluid (
working body A thermodynamic system is a body of matter and/or radiation, confined in space by walls, with defined permeabilities, which separate it from its surroundings. The surroundings may include other thermodynamic systems, or physical systems that are ...
), with a cold body ''T2'', such as a stream of cold water,
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
will invariably flow from hot to cold in the form of
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
''Q'', and given time the system will reach equilibrium. Entropy, defined as Q/T, was conceived by
Rudolf Clausius Rudolf Julius Emanuel Clausius (; 2 January 1822 – 24 August 1888) was a German physicist and mathematician and is considered one of the central founding fathers of the science of thermodynamics. By his restatement of Sadi Carnot's principle ...
as a function to measure the molecular
irreversibility In science, a process that is not reversible is called irreversible. This concept arises frequently in thermodynamics. All complex natural processes are irreversible, although a phase transition at the coexistence temperature (e.g. melting of i ...
of this process, i.e. the dissipative work the atoms and molecules do on each other during the transformation. In this diagram, one can calculate the entropy change Δ''S'' for the passage of the quantity of heat ''Q'' from the
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
''T1'', through the "working body" of fluid (see
heat engine In thermodynamics and engineering, a heat engine is a system that converts heat to mechanical energy, which can then be used to do mechanical work. It does this by bringing a working substance from a higher state temperature to a lower state ...
), which was typically a body of steam, to the temperature ''T2''. Moreover, one could assume, for the sake of argument, that the working body contains only two molecules of water. Next, if we make the assignment, as originally done by Clausius: : S= \frac Then the entropy change or "equivalence-value" for this transformation is: : \Delta S = S_ - S_ \, which equals: : \Delta S = \left(\frac - \frac \right) and by factoring out Q, we have the following form, as was derived by Clausius: : \Delta S = Q\left(\frac - \frac \right) Thus, for example, if Q was 50 units, ''T1'' was initially 100 degrees, and ''T2'' was 1 degree, then the entropy change for this process would be 49.5. Hence, entropy increased for this process, the process took a certain amount of "time", and one can correlate entropy increase with the passage of time. For this system configuration, subsequently, it is an "absolute rule". This rule is based on the fact that all natural processes are irreversible by virtue of the fact that molecules of a system, for example two molecules in a tank, not only do external work (such as to push a piston), but also do internal work on each other, in proportion to the heat used to do work (see:
Mechanical equivalent of heat In the history of science, the mechanical equivalent of heat states that motion and heat are mutually interchangeable and that in every case, a given amount of work would generate the same amount of heat, provided the work done is totally convert ...
) during the process. Entropy accounts for the fact that internal inter-molecular friction exists.


Correlations

An important difference between the past and the future is that in any system (such as a gas of particles) its initial conditions are usually such that its different parts are uncorrelated, but as the system evolves and its different parts interact with each other, they become correlated. For example, whenever dealing with a gas of particles, it is always assumed that its initial conditions are such that there is no correlation between the states of different particles (i.e. the speeds and locations of the different particles are completely random, up to the need to conform with the
macrostate In statistical mechanics, a microstate is a specific microscopic configuration of a thermodynamic system that the system may occupy with a certain probability in the course of its thermal fluctuations. In contrast, the macrostate of a system refe ...
of the system). This is closely related to the Second Law of Thermodynamics: For example, in a finite system interacting with finite heat reservoirs, entropy is equivalent to system-reservoir correlations, and thus both increase together. Take for example (experiment A) a closed box that is, at the beginning, half-filled with ideal gas. As time passes, the gas obviously expands to fill the whole box, so that the final state is a box full of gas. This is an irreversible process, since if the box is full at the beginning (experiment B), it does not become only half-full later, except for the very unlikely situation where the gas particles have very special locations and speeds. But this is precisely because we always assume that the initial conditions are such that the particles have random locations and speeds. This is not correct for the final conditions of the system, because the particles have interacted between themselves, so that their locations and speeds have become dependent on each other, i.e. correlated. This can be understood if we look at experiment A backwards in time, which we'll call experiment C: now we begin with a box full of gas, but the particles do not have random locations and speeds; rather, their locations and speeds are so particular, that after some time they all move to one half of the box, which is the final state of the system (this is the initial state of experiment A, because now we're looking at the same experiment backwards!). The interactions between particles now do not create correlations between the particles, but in fact turn them into (at least seemingly) random, "canceling" the pre-existing correlations. The only difference between experiment C (which defies the Second Law of Thermodynamics) and experiment B (which obeys the Second Law of Thermodynamics) is that in the former the particles are uncorrelated at the end, while in the latter the particles are uncorrelated at the beginning. In fact, if all the microscopic physical processes are reversible (see discussion below), then the Second Law of Thermodynamics can be proven for any isolated system of particles with initial conditions in which the particles states are uncorrelated. To do this, one must acknowledge the difference between the measured entropy of a system—which depends only on its
macrostate In statistical mechanics, a microstate is a specific microscopic configuration of a thermodynamic system that the system may occupy with a certain probability in the course of its thermal fluctuations. In contrast, the macrostate of a system refe ...
(its volume, temperature etc.)—and its
information entropy In information theory, the entropy of a random variable is the average level of "information", "surprise", or "uncertainty" inherent to the variable's possible outcomes. Given a discrete random variable X, which takes values in the alphabet \ ...
, which is the amount of information (number of computer bits) needed to describe the exact microstate of the system. The measured entropy is independent of correlations between particles in the system, because they do not affect its macrostate, but the information entropy does depend on them, because correlations lower the randomness of the system and thus lowers the amount of information needed to describe it. Therefore, in the absence of such correlations the two entropies are identical, but otherwise the information entropy is smaller than the measured entropy, and the difference can be used as a measure of the amount of correlations. Now, by Liouville's theorem, time-reversal of all microscopic processes implies that the amount of information needed to describe the exact microstate of an isolated system (its information-theoretic
joint entropy In information theory, joint entropy is a measure of the uncertainty associated with a set of variables. Definition The joint Shannon entropy (in bits) of two discrete random variables X and Y with images \mathcal X and \mathcal Y is defined ...
) is constant in time. This joint entropy is equal to the marginal entropy (entropy assuming no correlations) plus the entropy of correlation (mutual entropy, or its negative
mutual information In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the " amount of information" (in units such ...
). If we assume no correlations between the particles initially, then this joint entropy is just the marginal entropy, which is just the initial thermodynamic entropy of the system, divided by the
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constant, ...
. However, if these are indeed the initial conditions (and this is a crucial assumption), then such correlations form with time. In other words, there is a decreasing mutual entropy (or increasing mutual information), and for a time that is not too long—the correlations (mutual information) between particles only increase with time. Therefore, the thermodynamic entropy, which is proportional to the marginal entropy, must also increase with time (note that "not too long" in this context is relative to the time needed, in a classical version of the system, for it to pass through all its possible microstates—a time that can be roughly estimated as \tau e^S, where \tau is the time between particle collisions and S is the system's entropy. In any practical case this time is huge compared to everything else). Note that the correlation between particles is not a fully objective quantity. One cannot measure the mutual entropy, one can only measure its change, assuming one can measure a microstate. Thermodynamics is restricted to the case where microstates cannot be distinguished, which means that only the marginal entropy, proportional to the thermodynamic entropy, can be measured, and, in a practical sense, always increases. However, one should always statistically note - correlation doesn't imply causation.


The arrow of time in various phenomena

Phenomena that occur differently according to their time direction can ultimately be linked to the
Second Law of Thermodynamics The second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unles ...
, for example ice cubes melt in hot coffee rather than assembling themselves out of the coffee and a block sliding on a rough surface slows down rather than speeds up. The idea that we can remember the past and not the future is called the "psychological arrow of time" and it has deep connections with Maxwell's demon and the physics of information; memory is linked to the Second Law of Thermodynamics if one views it as correlation between brain cells (or computer bits) and the outer world: Since such correlations increase with time, memory is linked to past events, rather than to future events.


Current research

Current research focuses mainly on describing the thermodynamic arrow of time mathematically, either in classical or quantum systems, and on understanding its origin from the point of view of
cosmological Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
boundary conditions.


Dynamical systems

Some current research in dynamical systems indicates a possible "explanation" for the arrow of time. There are several ways to describe the time evolution of a dynamical system. In the classical framework, one considers an
ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast ...
, where the parameter is explicitly time. By the very nature of differential equations, the solutions to such systems are inherently time-reversible. However, many of the interesting cases are either ergodic or mixing, and it is strongly suspected that mixing and ergodicity somehow underlie the fundamental mechanism of the arrow of time. While the strong suspicion may be but a fleeting sense of intuition, it cannot be denied that, when there are multiple parameters, the field of
Partial differential equations In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similarly to ...
comes into play. In such systems there is the
Feynman–Kac formula The Feynman–Kac formula, named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations (PDEs) and stochastic processes. In 1947, when Kac and Feynman were both Cornell faculty, Kac attended a present ...
in play, which assures for specific cases, a one-to-one correspondence between specific linear
Stochastic differential equation A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs are used to model various phenomena such as stock p ...
and Partial differential equation. Therefore, any partial differential equation system is tantamount to a random system of a single parameter, which is not reversible due to the aforementioned correspondence. Mixing and ergodic systems do not have exact solutions, and thus proving time irreversibility in a mathematical sense is () impossible. The concept of "exact" solutions is an
Anthropic {{Short pages monitor Some processes that involve high energy particles and are governed by the
weak force Weak may refer to: Songs * Weak (AJR song), "Weak" (AJR song), 2016 * Weak (Melanie C song), "Weak" (Melanie C song), 2011 * Weak (SWV song), "Weak" (SWV song), 1993 * Weak (Skunk Anansie song), "Weak" (Skunk Anansie song), 1995 * "Weak", a song ...
(such as
K-meson KAON (Karlsruhe ontology) is an ontology infrastructure developed by the University of Karlsruhe and the Research Center for Information Technologies in Karlsruhe. Its first incarnation was developed in 2002 and supported an enhanced version of ...
decay) defy the symmetry between time directions. However, all known physical processes ''do'' preserve a more complicated symmetry (
CPT symmetry Charge, parity, and time reversal symmetry is a fundamental symmetry of physical laws under the simultaneous transformations of charge conjugation (C), parity transformation (P), and time reversal (T). CPT is the only combination of C, P, and ...
), and are therefore unrelated to the
second law of thermodynamics The second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unles ...
, or to the day-to-day experience of the arrow of time. A notable exception is the
wave function collapse In quantum mechanics, wave function collapse occurs when a wave function—initially in a quantum superposition, superposition of several eigenstates—reduces to a single eigenstate due to interaction with the external world. This interaction is ...
in
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistr ...
, an irreversible process which is considered either real (by the
Copenhagen interpretation The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics, principally attributed to Niels Bohr and Werner Heisenberg. It is one of the oldest of numerous proposed interpretations of quantum mechanics, as feat ...
) or apparent only (by the
Many-worlds interpretation The many-worlds interpretation (MWI) is an interpretation of quantum mechanics that asserts that the universal wavefunction is objectively real, and that there is no wave function collapse. This implies that all possible outcomes of quantum ...
of quantum mechanics). In either case, the wave function collapse always follows quantum decoherence, a process which is understood to be a result of the Second Law of Thermodynamics. The
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. ...
was in a uniform, high density state at its very early stages, shortly after the Big Bang. The hot gas in the early universe was near thermodynamic equilibrium (see
Horizon problem The horizon problem (also known as the homogeneity problem) is a cosmological fine-tuning problem within the Big Bang model of the universe. It arises due to the difficulty in explaining the observed homogeneity of causally disconnected region ...
); in systems where gravitation plays a major role, this is a state of low entropy, due to the negative heat capacity of such systems (this is in contrary to non-gravitational systems where
thermodynamic equilibrium Thermodynamic equilibrium is an axiomatic concept of thermodynamics. It is an internal state of a single thermodynamic system, or a relation between several thermodynamic systems connected by more or less permeable or impermeable walls. In the ...
is a state of maximum entropy). Moreover, due to its small volume compared to future epochs, the entropy was even lower as gas expansion increases its entropy. Thus the early universe can be considered to be highly ordered. Note that the uniformity of this early near-equilibrium state has been explained by the theory of cosmic inflation. According to this theory the universe (or, rather, its accessible part, a radius of 46 billion light years around Earth) evolved from a tiny, totally uniform volume (a portion of a much bigger universe), which expanded greatly; hence it was highly ordered. Fluctuations were then created by quantum processes related to its expansion, in a manner supposed to be such that these fluctuations went through quantum decoherence, so that they became uncorrelated for any practical use. This is supposed to give the desired initial conditions needed for the Second Law of Thermodynamics; different decoherent states ultimately evolved to different specific arrangements of galaxies and stars. The universe is apparently an open universe, so that its expansion will never terminate, but it is an interesting
thought experiment A thought experiment is a hypothetical situation in which a hypothesis, theory, or principle is laid out for the purpose of thinking through its consequences. History The ancient Greek ''deiknymi'' (), or thought experiment, "was the most anc ...
to imagine what would have happened had the universe been closed. In such a case, its expansion would stop at a certain time in the distant future, and then begin to shrink. Moreover, a closed universe is finite. It is unclear what would happen to the
Second Law of Thermodynamics The second law of thermodynamics is a physical law based on universal experience concerning heat and energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects (or "downhill"), unles ...
in such a case. One could imagine at least two different scenarios, though in fact only the first one is plausible, as the other requires a highly smooth cosmic evolution, contrary to what is observed: * The broad consensus among the scientific community today is that smooth initial conditions lead to a highly non-smooth final state, and that this is in fact the source of the thermodynamic arrow of time.
Gravitational In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
systems tend to gravitationally collapse to compact bodies such as black holes (a phenomenon unrelated to wavefunction collapse), so the universe would end in a Big Crunch that is very different than a Big Bang run in reverse, since the distribution of the matter would be highly non-smooth; as the universe shrinks, such compact bodies merge to larger and larger black holes. It may even be that it is impossible for the universe to have both a smooth beginning and a smooth ending. Note that in this scenario the energy density of the universe in the final stages of its shrinkage is much larger than in the corresponding initial stages of its expansion (there is no
destructive interference In physics, interference is a phenomenon in which two waves combine by adding their displacement together at every single point in space and time, to form a resultant wave of greater, lower, or the same amplitude. Constructive and destructive ...
, unlike in the second scenario described below), and consists of mostly black holes rather than free particles. * A highly controversial view is that instead, the arrow of time will reverse. The quantum fluctuations—which in the meantime have evolved into galaxies and stars—will be in superposition in such a way that the whole process described above is reversed—i.e., the fluctuations are erased by
destructive interference In physics, interference is a phenomenon in which two waves combine by adding their displacement together at every single point in space and time, to form a resultant wave of greater, lower, or the same amplitude. Constructive and destructive ...
and total uniformity is achieved once again. Thus the universe ends in a Big Crunch, which is similar to its beginning in the Big Bang. Because the two are totally symmetric, and the final state is very highly ordered, entropy must decrease close to the end of the universe, so that the Second Law of Thermodynamics reverses when the universe shrinks. This can be understood as follows: in the very early universe, interactions between fluctuations created entanglement ( quantum correlations) between particles spread all over the universe; during the expansion, these particles became so distant that these correlations became negligible (see quantum decoherence). At the time the expansion halts and the universe starts to shrink, such correlated particles arrive once again at contact (after circling around the universe), and the entropy starts to decrease—because highly correlated initial conditions may lead to a decrease in entropy. Another way of putting it, is that as distant particles arrive, more and more order is revealed because these particles are highly correlated with particles that arrived earlier. In this scenario, the cosmological
arrow of time The arrow of time, also called time's arrow, is the concept positing the "one-way direction" or "asymmetry" of time. It was developed in 1927 by the British astrophysicist Arthur Eddington, and is an unsolved general physics question. This ...
is the reason for both the thermodynamic arrow of time and the quantum arrow of time. Both will slowly disappear as the universe will come to a halt, and will later be reversed. In the first and more consensual scenario, it is the difference between the initial state and the final state of the universe that is responsible for the thermodynamic arrow of time. This is independent of the cosmological arrow of time.


See also

*
Arrow of time The arrow of time, also called time's arrow, is the concept positing the "one-way direction" or "asymmetry" of time. It was developed in 1927 by the British astrophysicist Arthur Eddington, and is an unsolved general physics question. This ...
* Cosmic inflation *
Entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynam ...
* History of entropy *
H-theorem In classical statistical mechanics, the ''H''-theorem, introduced by Ludwig Boltzmann in 1872, describes the tendency to decrease in the quantity ''H'' (defined below) in a nearly-ideal gas of molecules. L. Boltzmann,Weitere Studien über das Wä ...
*
Loschmidt's paradox Loschmidt's paradox, also known as the reversibility paradox, irreversibility paradox or ', is the objection that it should not be possible to deduce an irreversible process from time-symmetric dynamics. This puts the time reversal symmetry of (al ...


References


Further reading

* * (technical). *
Dover has reprinted the monograph in 2003 (). For a short paper listing "the essential points of that argument, correcting presentation points that were confusing ... and emphasizing conclusions more forcefully than previously" see *
Sean M. Carroll Sean Michael Carroll (born October 5, 1966) is an American theoretical physicist and philosopher who specializes in quantum mechanics, gravity, and cosmology. He is (formerly) a research professor in the Walter Burke Institute for Theoretical ...
, '' From Eternity to Here: The Quest for the Ultimate Theory of Time''


External links


Thermodynamic Asymmetry in Time
at the online Stanford Encyclopedia of Philosophy {{DEFAULTSORT:Entropy (Arrow Of Time) Thermodynamic entropy Asymmetry