HOME

TheInfoList



OR:

In
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistr ...
, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physical quantities of a
particle In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from ...
, such as
position Position often refers to: * Position (geometry), the spatial location (rather than orientation) of an entity * Position, a job or occupation Position may also refer to: Games and recreation * Position (poker), location relative to the dealer * ...
, ''x'', and momentum, ''p'', can be predicted from initial conditions. Such variable pairs are known as
complementary variables In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory. The complementarity principle holds that objects have certain pairs of complementary properties which cannot al ...
or canonically conjugate variables; and, depending on interpretation, the uncertainty principle limits to what extent such conjugate properties maintain their approximate meaning, as the mathematical framework of quantum physics does not support the notion of simultaneously well-defined conjugate properties expressed by a single value. The uncertainty principle implies that it is in general not possible to predict the value of a quantity with arbitrary certainty, even if all initial conditions are specified. Introduced first in 1927 by the German physicist
Werner Heisenberg Werner Karl Heisenberg () (5 December 1901 – 1 February 1976) was a German theoretical physicist and one of the main pioneers of the theory of quantum mechanics. He published his work in 1925 in a breakthrough paper. In the subsequent serie ...
, the uncertainty principle states that the more precisely the position of some particle is determined, the less precisely its momentum can be predicted from initial conditions, and vice versa. In the published 1927 paper, Heisenberg originally concluded that the uncertainty principle was \Deltap\Deltaq ~ h using the full Planck constant.. Annotated pre-publication proof sheet o
Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik
March 21, 1927.
The formal inequality relating the standard deviation of position ''σx'' and the standard deviation of momentum ''σp'' was derived by Earle Hesse Kennard later that year and by Hermann Weyl in 1928: where is the
reduced Planck constant The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivalen ...
, ). Historically, the uncertainty principle has been confused with a related effect in
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, called the observer effect, which notes that measurements of certain systems cannot be made without affecting the system, that is, without changing something in a system. Heisenberg utilized such an observer effect at the quantum level (see below) as a physical "explanation" of quantum uncertainty. It has since become clearer, however, that the uncertainty principle is inherent in the properties of all wave-like systems, and that it arises in quantum mechanics simply due to the
matter wave Matter waves are a central part of the theory of quantum mechanics, being an example of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wav ...
nature of all quantum objects. Thus, ''the uncertainty principle actually states a fundamental property of quantum systems and is not a statement about the observational success of current technology''. Indeed the uncertainty principle has its roots in how we apply calculus to write the basic equations of mechanics. It must be emphasized that ''measurement'' does not mean only a process in which a physicist-observer takes part, but rather any interaction between classical and quantum objects regardless of any observer. Since the uncertainty principle is such a basic result in quantum mechanics, typical experiments in quantum mechanics routinely observe aspects of it. Certain experiments, however, may deliberately test a particular form of the uncertainty principle as part of their main research program. These include, for example, tests of number–phase uncertainty relations in
superconducting Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
or
quantum optics Quantum optics is a branch of atomic, molecular, and optical physics dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons. Photons have ...
systems. Applications dependent on the uncertainty principle for their operation include extremely low-noise technology such as that required in gravitational wave interferometers.


Introduction

It is vital to illustrate how the principle applies to relatively intelligible physical situations since it is indiscernible on the macroscopic scales that humans experience. Two alternative frameworks for quantum physics offer different explanations for the uncertainty principle. The
wave mechanics Wave mechanics may refer to: * the mechanics of waves * the ''wave equation'' in quantum physics, see Schrödinger equation See also * Quantum mechanics * Wave equation The (two-way) wave equation is a second-order linear partial different ...
picture of the uncertainty principle is more visually intuitive, but the more abstract
matrix mechanics Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. It was the first conceptually autonomous and logically consistent formulation of quantum mechanics. Its account of quantum j ...
picture formulates it in a way that generalizes more easily. Mathematically, in wave mechanics, the uncertainty relation between position and momentum arises because the expressions of the wavefunction in the two corresponding
orthonormal In linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal (or perpendicular along a line) unit vectors. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of un ...
bases in Hilbert space are Fourier transforms of one another (i.e., position and momentum are conjugate variables). A nonzero function and its Fourier transform cannot both be sharply localized at the same time. A similar tradeoff between the variances of Fourier conjugates arises in all systems underlain by Fourier analysis, for example in sound waves: A pure tone is a sharp spike at a single frequency, while its Fourier transform gives the shape of the sound wave in the time domain, which is a completely delocalized sine wave. In quantum mechanics, the two key points are that the position of the particle takes the form of a
matter wave Matter waves are a central part of the theory of quantum mechanics, being an example of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wav ...
, and momentum is its Fourier conjugate, assured by the
de Broglie relation Matter waves are a central part of the theory of quantum mechanics, being an example of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave ...
, where is the
wavenumber In the physical sciences, the wavenumber (also wave number or repetency) is the '' spatial frequency'' of a wave, measured in cycles per unit distance (ordinary wavenumber) or radians per unit distance (angular wavenumber). It is analogous to te ...
. In
matrix mechanics Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. It was the first conceptually autonomous and logically consistent formulation of quantum mechanics. Its account of quantum j ...
, the
mathematical formulation of quantum mechanics The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. This mathematical formalism uses mainly a part of functional analysis, especially Hilbert spaces, which ...
, any pair of non-
commuting Commuting is periodically recurring travel between one's place of residence and place of work or study, where the traveler, referred to as a commuter, leaves the boundary of their home community. By extension, it can sometimes be any regul ...
self-adjoint operator In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map ''A'' (from ''V'' to its ...
s representing
observable In physics, an observable is a physical quantity that can be measured. Examples include position and momentum. In systems governed by classical mechanics, it is a real-valued "function" on the set of all possible system states. In quantum phy ...
s are subject to similar uncertainty limits. An eigenstate of an observable represents the state of the wavefunction for a certain measurement value (the eigenvalue). For example, if a measurement of an observable is performed, then the system is in a particular eigenstate of that observable. However, the particular eigenstate of the observable need not be an eigenstate of another observable : If so, then it does not have a unique associated measurement for it, as the system is not in an eigenstate of that observable.


Wave mechanics interpretation

(Ref Online copy
) According to the de Broglie hypothesis, every object in the universe is a
wave In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (re ...
, i.e., a situation which gives rise to this phenomenon. The position of the particle is described by a
wave function A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements ...
\Psi(x,t). The time-independent wave function of a single-moded plane wave of wavenumber ''k''0 or momentum ''p''0 is \psi(x) \propto e^ = e^ ~. The
Born rule The Born rule (also called Born's rule) is a key postulate of quantum mechanics which gives the probability that a measurement of a quantum system will yield a given result. In its simplest form, it states that the probability density of findi ...
states that this should be interpreted as a probability density amplitude function in the sense that the probability of finding the particle between ''a'' and ''b'' is \operatorname P \leq X \leq b= \int_a^b , \psi(x), ^2 \, \mathrmx ~. In the case of the single-moded plane wave, , \psi(x), ^2 is a uniform distribution. In other words, the particle position is extremely uncertain in the sense that it could be essentially anywhere along the wave packet. On the other hand, consider a wave function that is a sum of many waves, which we may write as \psi(x) \propto \sum_n A_n e^~, where ''A''''n'' represents the relative contribution of the mode ''p''''n'' to the overall total. The figures to the right show how with the addition of many plane waves, the wave packet can become more localized. We may take this a step further to the
continuum limit In mathematical physics and mathematics, the continuum limit or scaling limit of a lattice model refers to its behaviour in the limit as the lattice spacing goes to zero. It is often useful to use lattice models to approximate real-world processe ...
, where the wave function is an
integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along wit ...
over all possible modes \psi(x) = \frac \int_^\infty \varphi(p) \cdot e^ \, dp ~, with \varphi(p) representing the amplitude of these modes and is called the wave function in
momentum space In physics and geometry, there are two closely related vector spaces, usually three-dimensional but in general of any finite dimension. Position space (also real space or coordinate space) is the set of all ''position vectors'' r in space, and h ...
. In mathematical terms, we say that \varphi(p) is the '' Fourier transform'' of \psi(x) and that ''x'' and ''p'' are conjugate variables. Adding together all of these plane waves comes at a cost, namely the momentum has become less precise, having become a mixture of waves of many different momenta. One way to quantify the precision of the position and momentum is the standard deviation ''σ''. Since , \psi(x), ^2 is a probability density function for position, we calculate its standard deviation. The precision of the position is improved, i.e. reduced ''σ''''x'', by using many plane waves, thereby weakening the precision of the momentum, i.e. increased ''σ''''p''. Another way of stating this is that ''σ''''x'' and ''σ''''p'' have an
inverse relationship In statistics, there is a negative relationship or inverse relationship between two variables if higher values of one variable tend to be associated with lower values of the other. A negative relationship between two variables usually implies that ...
or are at least bounded from below. This is the uncertainty principle, the exact limit of which is the Kennard bound. Click the ''show'' button below to see a semi-formal derivation of the Kennard inequality using wave mechanics.


Matrix mechanics interpretation

(Ref ) In matrix mechanics, observables such as position and momentum are represented by
self-adjoint operator In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map ''A'' (from ''V'' to its ...
s. When considering pairs of observables, an important quantity is the '' commutator''. For a pair of operators and \hat, one defines their commutator as hat,\hat\hat\hat-\hat\hat. In the case of position and momentum, the commutator is the
canonical commutation relation In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example, hat x,\hat p_ ...
hat,\hati \hbar. The physical meaning of the non-commutativity can be understood by considering the effect of the commutator on position and momentum eigenstates. Let , \psi\rangle be a right eigenstate of position with a constant eigenvalue . By definition, this means that \hat, \psi\rangle = x_0 , \psi\rangle. Applying the commutator to , \psi\rangle yields hat,\hat, \psi \rangle = (\hat\hat-\hat\hat) , \psi \rangle = (\hat - x_0 \hat) \hat \, , \psi \rangle = i \hbar , \psi \rangle, where is the
identity operator Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film) ...
. Suppose, for the sake of
proof by contradiction In logic and mathematics, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Proof by contradiction is also known ...
, that , \psi\rangle is also a right eigenstate of momentum, with constant eigenvalue . If this were true, then one could write (\hat - x_0 \hat) \hat \, , \psi \rangle = (\hat - x_0 \hat) p_0 \, , \psi \rangle = (x_0 \hat - x_0 \hat) p_0 \, , \psi \rangle=0. On the other hand, the above canonical commutation relation requires that hat,\hat, \psi \rangle=i \hbar , \psi \rangle \ne 0. This implies that no quantum state can simultaneously be both a position and a momentum eigenstate. When a state is measured, it is projected onto an eigenstate in the basis of the relevant observable. For example, if a particle's position is measured, then the state amounts to a position eigenstate. This means that the state is ''not'' a momentum eigenstate, however, but rather it can be represented as a sum of multiple momentum basis eigenstates. In other words, the momentum must be less precise. This precision may be quantified by the standard deviations, \sigma_x=\sqrt \sigma_p=\sqrt. As in the wave mechanics interpretation above, one sees a tradeoff between the respective precisions of the two, quantified by the uncertainty principle.


Heisenberg limit

In
quantum metrology Quantum metrology is the study of making high-resolution and highly sensitive measurements of physical parameters using quantum theory to describe the physical systems, particularly exploiting quantum entanglement and quantum squeezing. This fie ...
, and especially interferometry, the Heisenberg limit is the optimal rate at which the accuracy of a measurement can scale with the energy used in the measurement. Typically, this is the measurement of a phase (applied to one arm of a
beam-splitter A beam splitter or ''beamsplitter'' is an optical device that splits a beam of light into a transmitted and a reflected beam. It is a crucial part of many optical experimental and measurement systems, such as interferometers, also finding wide ...
) and the energy is given by the number of photons used in an interferometer. Although some claim to have broken the Heisenberg limit, this reflects disagreement on the definition of the scaling resource. Suitably defined, the Heisenberg limit is a consequence of the basic principles of quantum mechanics and cannot be beaten, although the weak Heisenberg limit can be beaten.


Robertson–Schrödinger uncertainty relations

The most common general form of the uncertainty principle is the ''
Robertson Robertson may refer to: People * Robertson (surname) (includes a list of people with this name) * Robertson (given name) * Clan Robertson, a Scottish clan * Robertson, stage name of Belgian magician Étienne-Gaspard Robert (1763–1837) Places ...
uncertainty relation''. For an arbitrary
Hermitian operator In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle (equivalently, a Hermitian operator in the finite-dimensional case) is a linear map ''A'' (from ''V'' to it ...
\hat we can associate a standard deviation \sigma_ = \sqrt, where the brackets \langle\mathcal\rangle indicate an
expectation value In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a l ...
. For a pair of operators \hat and \hat, we may define their '' commutator'' as hat,\hat\hat\hat-\hat\hat, In this notation, the Robertson uncertainty relation is given by \sigma_A \sigma_B \geq \left, \frac\langle hat,\hatrangle \ = \frac\left, \langle hat,\hatrangle \, The Robertson uncertainty relation immediately follows from a slightly stronger inequality, the ''Schrödinger uncertainty relation'', where we have introduced the ''anticommutator'', \=\hat\hat+\hat\hat.


Mixed states

The Robertson–Schrödinger uncertainty relation may be generalized in a straightforward way to describe mixed states. \sigma_A^2 \sigma_B^2 \geq \left , \frac\operatorname(\rho\) - \operatorname(\rho A)\operatorname(\rho B)\right , ^2 +\left , \frac \operatorname(\rho ,B\right , ^2 .


The Maccone–Pati uncertainty relations

The Robertson–Schrödinger uncertainty relation can be trivial if the state of the system is chosen to be eigenstate of one of the observable. The stronger uncertainty relations proved by Maccone and Pati give non-trivial bounds on the sum of the variances for two incompatible observables. (Earlier works on uncertainty relations formulated as the sum of variances include, e.g., Ref. due to Huang.) For two non-commuting observables A and B the first stronger uncertainty relation is given by \sigma_^2 + \sigma_^2 \ge \pm i \langle \Psi\mid
, B The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline o ...
\Psi \rangle + \mid \langle \Psi\mid(A \pm i B)\mid \rangle, ^2, where \sigma_^2 = \langle \Psi , A^2 , \Psi \rangle - \langle \Psi \mid A \mid \Psi \rangle^2 , \sigma_^2 = \langle \Psi , B^2 , \Psi \rangle - \langle \Psi \mid B \mid\Psi \rangle^2 , , \rangle is a normalized vector that is orthogonal to the state of the system , \Psi \rangle and one should choose the sign of \pm i \langle \Psi\mid
, B The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline o ...
mid\Psi \rangle to make this real quantity a positive number. The second stronger uncertainty relation is given by \sigma_A^2 + \sigma_B^2 \ge \frac, \langle _ \mid(A + B)\mid \Psi \rangle, ^2 where , _ \rangle is a state orthogonal to , \Psi \rangle . The form of , _ \rangle implies that the right-hand side of the new uncertainty relation is nonzero unless , \Psi\rangle is an eigenstate of (A + B). One may note that , \Psi \rangle can be an eigenstate of ( A+ B) without being an eigenstate of either A or B . However, when , \Psi \rangle is an eigenstate of one of the two observables the Heisenberg–Schrödinger uncertainty relation becomes trivial. But the lower bound in the new relation is nonzero unless , \Psi \rangle is an eigenstate of both.


Improving the Robertson–Schrödinger uncertainty relation based on decompositions of the density matrix

The Robertson–Schrödinger uncertainty can be improved noting that it must hold for all components \varrho_k in any decomposition of the density matrix given as \varrho=\sum_k p_k \varrho_k. Here, for the probailities p_k\ge0 and \sum_k p_k=1 hold. Then, using the relation \sum_k a_k \sum_k b_k \ge \left(\sum_k \sqrt\right)^2 for a_k,b_k\ge 0, it follows that \sigma_A^2 \sigma_B^2 \geq \left sum_k p_k L(\varrho_k)\right2, where the function in the bound is defined L(\varrho) = \sqrt. The above relation very often has a bound larger than that of the original Robertson–Schrödinger uncertainty relation. Thus, we need to calculate the bound of the Robertson–Schrödinger uncertainty for the mixed components of the quantum state rather than for the quantum state, and compute an average of their square roots. The following expression is stronger than the Robertson–Schrödinger uncertainty relation \sigma_A^2 \sigma_B^2 \geq \left max_ \sum_k p_k L(\varrho_k)\right2, where on the right-hand side there is a concave roof over the decompositions of the density matrix. The improved relation above is saturated by all single-qubit quantum states. With similar arguments, one can derive a relation with a convex roof on the right-hand side \sigma_A^2 F_Q varrho,B\geq 4 \left min_ \sum_k p_k L(\vert \Psi_k\rangle\langle \Psi_k\vert)\right2 where F_Q varrho,B/math> denotes the
quantum Fisher information The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information. The quantum Fisher information F_ varrho,A of a state \varrho with respect to the observable A is defined as ...
and the density matrix is decomposed to pure states as \varrho=\sum_k p_k \vert \Psi_k\rangle \langle \Psi_k\vert. The derivation takes advantage of the fact that the
quantum Fisher information The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information. The quantum Fisher information F_ varrho,A of a state \varrho with respect to the observable A is defined as ...
is the convex roof of the variance times four. A simpler inequality follows without a convex roof \sigma_A^2 F_Q varrho,B\geq \vert \langle i ,Brangle\vert^2, which is stronger than the Heisenberg uncertainty relation, since for the quantum Fisher information we have F_Q varrho,Ble 4 \sigma_B, while for pure states the equality holds.


Phase space

In the
phase space formulation The phase-space formulation of quantum mechanics places the position ''and'' momentum variables on equal footing in phase space. In contrast, the Schrödinger picture uses the position ''or'' momentum representations (see also position and mome ...
of quantum mechanics, the Robertson–Schrödinger relation follows from a positivity condition on a real star-square function. Given a Wigner function W(x,p) with star product ★ and a function ''f'', the following is generally true: \langle f^* \star f \rangle =\int (f^* \star f) \, W(x,p) \, dx \, dp \ge 0 ~. Choosing f = a + bx + cp, we arrive at \langle f^* \star f \rangle =\begina^* & b^* & c^* \end\begin1 & \langle x \rangle & \langle p \rangle \\ \langle x \rangle & \langle x \star x \rangle & \langle x \star p \rangle \\ \langle p \rangle & \langle p \star x \rangle & \langle p \star p \rangle \end\begina \\ b \\ c\end \ge 0 ~. Since this positivity condition is true for ''all'' ''a'', ''b'', and ''c'', it follows that all the eigenvalues of the matrix are non-negative. The non-negative eigenvalues then imply a corresponding non-negativity condition on the
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if a ...
, \det\begin1 & \langle x \rangle & \langle p \rangle \\ \langle x \rangle & \langle x \star x \rangle & \langle x \star p \rangle \\ \langle p \rangle & \langle p \star x \rangle & \langle p \star p \rangle \end = \det\begin1 & \langle x \rangle & \langle p \rangle \\ \langle x \rangle & \langle x^2 \rangle & \left\langle xp + \frac \right\rangle \\ \langle p \rangle & \left\langle xp - \frac \right\rangle & \langle p^2 \rangle \end \ge 0~, or, explicitly, after algebraic manipulation, \sigma_x^2 \sigma_p^2 = \left( \langle x^2 \rangle - \langle x \rangle^2 \right)\left( \langle p^2 \rangle - \langle p \rangle^2 \right)\ge \left( \langle xp \rangle - \langle x \rangle \langle p \rangle \right)^2 + \frac ~.


Examples

Since the Robertson and Schrödinger relations are for general operators, the relations can be applied to any two observables to obtain specific uncertainty relations. A few of the most common relations found in the literature are given below. * For position and linear momentum, the
canonical commutation relation In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example, hat x,\hat p_ ...
hat, \hat= i\hbar implies the Kennard inequality from above: \sigma_x \sigma_p \geq \frac. * For two orthogonal components of the
total angular momentum In quantum mechanics, the total angular momentum quantum number parametrises the total angular momentum of a given particle, by combining its orbital angular momentum and its intrinsic angular momentum (i.e., its spin). If s is the particle's sp ...
operator of an object: \sigma_ \sigma_ \geq \frac \big, \langle J_k\rangle\big, , where ''i'', ''j'', ''k'' are distinct, and ''J''''i'' denotes angular momentum along the ''x''''i'' axis. This relation implies that unless all three components vanish together, only a single component of a system's angular momentum can be defined with arbitrary precision, normally the component parallel to an external (magnetic or electric) field. Moreover, for _x, J_y= i \hbar \varepsilon_ J_z, a choice \hat = J_x, \hat = J_y, in angular momentum multiplets, ''ψ'' = , ''j'', ''m''⟩, bounds the
Casimir invariant In mathematics, a Casimir element (also known as a Casimir invariant or Casimir operator) is a distinguished element of the center of the universal enveloping algebra of a Lie algebra. A prototypical example is the squared angular momentum operato ...
(angular momentum squared, \langle J_x^2+ J_y^2 + J_z^2 \rangle) from below and thus yields useful constraints such as , and hence ''j'' ≥ ''m'', among others. * In non-relativistic mechanics, time is privileged as an independent variable. Nevertheless, in 1945, L. I. Mandelshtam and I. E. Tamm derived a non-relativistic ''time–energy uncertainty relation'', as follows. For a quantum system in a non-stationary state and an observable ''B'' represented by a self-adjoint operator \hat B, the following formula holds: \sigma_E \frac \ge \frac, where ''σ''''E'' is the standard deviation of the energy operator (Hamiltonian) in the state , ''σ''''B'' stands for the standard deviation of ''B''. Although the second factor in the left-hand side has dimension of time, it is different from the time parameter that enters the
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of th ...
. It is a ''lifetime'' of the state with respect to the observable ''B'': In other words, this is the ''time interval'' (Δ''t'') after which the expectation value \langle\hat B\rangle changes appreciably. An informal, heuristic meaning of the principle is the following: A state that only exists for a short time cannot have a definite energy. To have a definite energy, the frequency of the state must be defined accurately, and this requires the state to hang around for many cycles, the reciprocal of the required accuracy. For example, in spectroscopy, excited states have a finite lifetime. By the time–energy uncertainty principle, they do not have a definite energy, and, each time they decay, the energy they release is slightly different. The average energy of the outgoing photon has a peak at the theoretical energy of the state, but the distribution has a finite width called the ''natural linewidth''. Fast-decaying states have a broad linewidth, while slow-decaying states have a narrow linewidth. The same linewidth effect also makes it difficult to specify the
rest mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, i ...
of unstable, fast-decaying particles in
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
. The faster the
particle decay In particle physics, particle decay is the spontaneous process of one unstable subatomic particle transforming into multiple other particles. The particles created in this process (the ''final state'') must each be less massive than the original, ...
s (the shorter its lifetime), the less certain is its mass (the larger the particle's
width Length is a measure of distance. In the International System of Quantities, length is a quantity with dimension distance. In most systems of measurement a base unit for length is chosen, from which all other units are derived. In the Intern ...
). * For the number of electrons in a superconductor and the
phase Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform * Phase space, a mathematic ...
of its Ginzburg–Landau order parameter \Delta N \, \Delta \varphi \geq 1.


A counterexample

Suppose we consider a quantum particle on a ring, where the wave function depends on an angular variable \theta, which we may take to lie in the interval ,2\pi/math>. Define "position" and "momentum" operators \hat and \hat by \hat\psi(\theta)=\theta\psi(\theta),\quad \theta\in ,2\pi and \hat\psi=-i\hbar\frac, where we impose periodic boundary conditions on \hat. The definition of \hat depends on our choice to have \theta range from 0 to 2\pi. These operators satisfy the usual commutation relations for position and momentum operators, hat,\hati\hbar. Now let \psi be any of the eigenstates of \hat, which are given by \psi(\theta)=e^. These states are normalizable, unlike the eigenstates of the momentum operator on the line. Also the operator \hat is bounded, since \theta ranges over a bounded interval. Thus, in the state \psi, the uncertainty of B is zero and the uncertainty of A is finite, so that \sigma_A\sigma_B=0. Although this result appears to violate the Robertson uncertainty principle, the paradox is resolved when we note that \psi is not in the domain of the operator \hat\hat, since multiplication by \theta disrupts the periodic boundary conditions imposed on \hat. Thus, the derivation of the Robertson relation, which requires \hat\hat\psi and \hat\hat\psi to be defined, does not apply. (These also furnish an example of operators satisfying the canonical commutation relations but not the Weyl relations.) For the usual position and momentum operators \hat and \hat on the real line, no such counterexamples can occur. As long as \sigma_x and \sigma_p are defined in the state \psi, the Heisenberg uncertainty principle holds, even if \psi fails to be in the domain of \hat\hat or of \hat\hat.


Examples

(Refs )


Quantum harmonic oscillator stationary states

Consider a one-dimensional quantum harmonic oscillator. It is possible to express the position and momentum operators in terms of the
creation and annihilation operators Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. An annihilation operator (usually d ...
: \hat x = \sqrt(a+a^\dagger) \hat p = i\sqrt(a^\dagger-a). Using the standard rules for creation and annihilation operators on the energy eigenstates, a^, n\rangle=\sqrt, n+1\rangle a, n\rangle=\sqrt, n-1\rangle, the
variance In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbe ...
s may be computed directly, \sigma_x^2 = \frac \left( n+\frac\right) \sigma_p^2 = \hbar m\omega \left( n+\frac\right)\, . The product of these standard deviations is then \sigma_x \sigma_p = \hbar \left(n+\frac\right) \ge \frac.~ In particular, the above Kennard bound is saturated for the ground state , for which the probability density is just the
normal distribution In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is : f(x) = \frac e^ The parameter \mu ...
.


Quantum harmonic oscillators with Gaussian initial condition

In a quantum harmonic oscillator of characteristic angular frequency ω, place a state that is offset from the bottom of the potential by some displacement ''x''0 as \psi(x)=\left(\frac\right)^ \exp, where Ω describes the width of the initial state but need not be the same as ω. Through integration over the Propagator#Basic Examples: Propagator of Free Particle and Harmonic Oscillator, propagator, we can solve for the -dependent solution. After many cancelations, the probability densities reduce to , \Psi(x,t), ^2 \sim \mathcal\left( x_0 \cos , \frac \left( \cos^2(\omega t) + \frac \sin^2 \right)\right) , \Phi(p,t), ^2 \sim \mathcal\left( -m x_0 \omega \sin(\omega t), \frac \left( \cos^2 + \frac \sin^2 \right)\right), where we have used the notation \mathcal(\mu, \sigma^2) to denote a normal distribution of mean μ and variance σ2. Copying the variances above and applying list of trigonometric identities, trigonometric identities, we can write the product of the standard deviations as \begin \sigma_x \sigma_p&=\frac\sqrt \\ &= \frac\sqrt \end From the relations \frac+\frac \ge 2, \quad , \cos(4 \omega t), \le 1, we can conclude the following: (the right most equality holds only when Ω = ''ω'') . \sigma_x \sigma_p \ge \frac\sqrt = \frac.


Coherent states

A coherent state is a right eigenstate of the annihilation operator, \hat, \alpha\rangle=\alpha, \alpha\rangle, which may be represented in terms of Fock states as , \alpha\rangle =e^ \sum_^\infty , n\rangle In the picture where the coherent state is a massive particle in a quantum harmonic oscillator, the position and momentum operators may be expressed in terms of the annihilation operators in the same formulas above and used to calculate the variances, \sigma_x^2 = \frac, \sigma_p^2 = \frac. Therefore, every coherent state saturates the Kennard bound \sigma_x \sigma_p = \sqrt \, \sqrt = \frac. with position and momentum each contributing an amount \sqrt in a "balanced" way. Moreover, every squeezed coherent state also saturates the Kennard bound although the individual contributions of position and momentum need not be balanced in general.


Particle in a box

Consider a particle in a one-dimensional box of length L. The Particle in a box#Wavefunctions, eigenfunctions in position and momentum space are \psi_n(x,t) =\begin A \sin(k_n x)\mathrm^, & 0 < x < L,\\ 0, & \text \end and \varphi_n(p,t)=\sqrt\,\,\frac, where \omega_n=\frac and we have used the de Broglie relation p=\hbar k. The variances of x and p can be calculated explicitly: \sigma_x^2=\frac\left(1-\frac\right) \sigma_p^2=\left(\frac\right)^2. The product of the standard deviations is therefore \sigma_x \sigma_p = \frac \sqrt. For all n=1, \, 2, \, 3,\, \ldots, the quantity \sqrt is greater than 1, so the uncertainty principle is never violated. For numerical concreteness, the smallest value occurs when n = 1, in which case \sigma_x \sigma_p = \frac \sqrt \approx 0.568 \hbar > \frac.


Constant momentum

Assume a particle initially has a
momentum space In physics and geometry, there are two closely related vector spaces, usually three-dimensional but in general of any finite dimension. Position space (also real space or coordinate space) is the set of all ''position vectors'' r in space, and h ...
wave function described by a normal distribution around some constant momentum ''p''0 according to \varphi(p) = \left(\frac \right)^ \exp\left(\frac\right), where we have introduced a reference scale x_0=\sqrt, with \omega_0>0 describing the width of the distribution—cf. nondimensionalization. If the state is allowed to evolve in free space, then the time-dependent momentum and position space wave functions are \Phi(p,t) = \left(\frac \right)^ \exp\left(\frac-\frac\right), \Psi(x,t) = \left(\frac \right)^ \frac \, \exp\left(-\frac\right). Since \langle p(t) \rangle = p_0 and \sigma_p(t) = \hbar /(\sqrtx_0), this can be interpreted as a particle moving along with constant momentum at arbitrarily high precision. On the other hand, the standard deviation of the position is \sigma_x = \frac \sqrt such that the uncertainty product can only increase with time as \sigma_x(t) \sigma_p(t) = \frac \sqrt


Additional uncertainty relations


Systematic and statistical errors

The inequalities above focus on the ''statistical imprecision'' of observables as quantified by the standard deviation \sigma. Heisenberg's original version, however, was dealing with the ''systematic error'', a disturbance of the quantum system produced by the measuring apparatus, i.e., an Observer effect (physics), observer effect. If we let \varepsilon_A represent the error (i.e., accuracy, inaccuracy) of a measurement of an observable ''A'' and \eta_B the disturbance produced on a subsequent measurement of the conjugate variable ''B'' by the former measurement of ''A'', then the inequality proposed by Ozawa — encompassing both systematic and statistical errors — holds: Heisenberg's uncertainty principle, as originally described in the 1927 formulation, mentions only the first term of Ozawa inequality, regarding the ''systematic error''. Using the notation above to describe the ''error/disturbance'' effect of ''sequential measurements'' (first ''A'', then ''B''), it could be written as The formal derivation of the Heisenberg relation is possible but far from intuitive. It was ''not'' proposed by Heisenberg, but formulated in a mathematically consistent way only in recent years. Also, it must be stressed that the Heisenberg formulation is not taking into account the intrinsic statistical errors \sigma_A and \sigma_B. There is increasing experimental evidence that the total quantum uncertainty cannot be described by the Heisenberg term alone, but requires the presence of all the three terms of the Ozawa inequality. Using the same formalism, it is also possible to introduce the other kind of physical situation, often confused with the previous one, namely the case of ''simultaneous measurements'' (''A'' and ''B'' at the same time): The two simultaneous measurements on ''A'' and ''B'' are necessarily ''unsharp'' or weak measurement, ''weak''. It is also possible to derive an uncertainty relation that, as the Ozawa's one, combines both the statistical and systematic error components, but keeps a form very close to the Heisenberg original inequality. By adding Robertson and Ozawa relations we obtain \varepsilon_A \eta_B + \varepsilon_A \, \sigma_B + \sigma_A \, \eta_B + \sigma_A \sigma_B \geq \left, \Bigl\langle \bigl[\hat,\hat\bigr] \Bigr\rangle \ . The four terms can be written as: (\varepsilon_A + \sigma_A) \, (\eta_B + \sigma_B) \, \geq \, \left, \Bigl\langle\bigl[\hat,\hat \bigr] \Bigr\rangle \ . Defining: \bar \varepsilon_A \, \equiv \, (\varepsilon_A + \sigma_A) as the ''inaccuracy'' in the measured values of the variable ''A'' and \bar \eta_B \, \equiv \, (\eta_B + \sigma_B) as the ''resulting fluctuation'' in the conjugate variable ''B'', Fujikawa established an uncertainty relation similar to the Heisenberg original one, but valid both for ''systematic and statistical errors'':


Quantum entropic uncertainty principle

For many distributions, the standard deviation is not a particularly natural way of quantifying the structure. For example, uncertainty relations in which one of the observables is an angle has little physical meaning for fluctuations larger than one period. Other examples include highly bimodal distributions, or unimodal distributions with divergent variance. A solution that overcomes these issues is an uncertainty based on entropic uncertainty instead of the product of variances. While formulating the many-worlds interpretation of quantum mechanics in 1957, Hugh Everett III conjectured a stronger extension of the uncertainty principle based on entropic certainty. This conjecture, also studied by Hirschman and proven in 1975 by Beckner and by Iwo Bialynicki-Birula and Jerzy Mycielski is that, for two normalized, dimensionless Fourier transform pairs and where :f(a) = \int_^\infty g(b)\ e^\,db and \,\,\,g(b) = \int_^\infty f(a)\ e^\,da the Shannon Information entropy, information entropies H_a = \int_^\infty f(a) \log(f(a))\,da, and H_b = \int_^\infty g(b) \log(g(b))\,db are subject to the following constraint, where the logarithms may be in any base. The probability distribution functions associated with the position wave function and the momentum wave function have dimensions of inverse length and momentum respectively, but the entropies may be rendered dimensionless by H_x = - \int , \psi(x), ^2 \ln \left(x_0 \, , \psi(x), ^2 \right) dx =-\left\langle \ln \left(x_0 \, \left, \psi(x)\^2 \right) \right\rangle H_p = - \int , \varphi(p), ^2 \ln (p_0\,, \varphi(p), ^2) \,dp =-\left\langle \ln (p_0\left, \varphi(p)\^2 ) \right\rangle where and are some arbitrarily chosen length and momentum respectively, which render the arguments of the logarithms dimensionless. Note that the entropies will be functions of these chosen parameters. Due to the Wavefunction#Relation between wave functions, Fourier transform relation between the position wave function and the momentum wavefunction , the above constraint can be written for the corresponding entropies as where is Planck's constant. Depending on one's choice of the product, the expression may be written in many ways. If is chosen to be , then H_x + H_p \ge \log \left(\frac\right) If, instead, is chosen to be , then H_x + H_p \ge \log (e\,\pi) If and are chosen to be unity in whatever system of units are being used, then H_x + H_p \ge \log \left(\frac\right) where is interpreted as a dimensionless number equal to the value of Planck's constant in the chosen system of units. Note that these inequalities can be extended to multimode quantum states, or wavefunctions in more than one spatial dimension. The quantum entropic uncertainty principle is more restrictive than the Heisenberg uncertainty principle. From the inverse logarithmic Sobolev inequalities H_x \le \frac \log ( 2e\pi \sigma_x^2 / x_0^2 )~, H_p \le \frac \log ( 2e\pi \sigma_p^2 /p_0^2 )~, (equivalently, from the fact that normal distributions maximize the entropy of all such with a given variance), it readily follows that this entropic uncertainty principle is ''stronger than the one based on standard deviations'', because \sigma_x \sigma_p \ge \frac \exp\left(H_x + H_p - \log \left(\frac\right)\right) \ge \frac~. In other words, the Heisenberg uncertainty principle, is a consequence of the quantum entropic uncertainty principle, but not vice versa. A few remarks on these inequalities. First, the choice of base e is a matter of popular convention in physics. The logarithm can alternatively be in any base, provided that it be consistent on both sides of the inequality. Second, recall the Shannon entropy has been used, ''not'' the quantum von Neumann entropy. Finally, the normal distribution saturates the inequality, and it is the only distribution with this property, because it is the maximum entropy probability distribution among those with fixed variance (cf. differential entropy#Maximization in the normal distribution, here for proof). A measurement apparatus will have a finite resolution set by the discretization of its possible outputs into bins, with the probability of lying within one of the bins given by the Born rule. We will consider the most common experimental situation, in which the bins are of uniform size. Let ''δx'' be a measure of the spatial resolution. We take the zeroth bin to be centered near the origin, with possibly some small constant offset ''c''. The probability of lying within the jth interval of width ''δx'' is \operatorname P[x_j]= \int_^, \psi(x), ^2 \, dx To account for this discretization, we can define the Shannon entropy of the wave function for a given measurement apparatus as H_x=-\sum_^\infty \operatorname P[x_j] \ln \operatorname P[x_j]. Under the above definition, the entropic uncertainty relation is H_x + H_p > \ln\left(\frac\right)-\ln\left(\frac \right). Here we note that is a typical infinitesimal phase space volume used in the calculation of a partition function (statistical mechanics), partition function. The inequality is also strict and not saturated. Efforts to improve this bound are an active area of research.


Uncertainty relation with three angular momentum components

For a particle of spin-j the following uncertainty relation holds \sigma_^2+\sigma_^2+\sigma_^2\ge j, where J_l are angular momentum components. The relation can be derived from \langle J_x^2+J_y^2+J_z^2\rangle = j(j+1), and \langle J_x\rangle^2+\langle J_y\rangle^2+\langle J_z\rangle^2\le j. The relation can be strengthened as \sigma_^2+\sigma_^2+F_Q[\varrho,J_z]/4\ge j, where F_Q[\varrho,J_z] is the
quantum Fisher information The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information. The quantum Fisher information F_ varrho,A of a state \varrho with respect to the observable A is defined as ...
.


Harmonic analysis

In the context of harmonic analysis, a branch of mathematics, the uncertainty principle implies that one cannot at the same time localize the value of a function and its Fourier transform. To wit, the following inequality holds, \left(\int_^\infty x^2 , f(x), ^2\,dx\right)\left(\int_^\infty \xi^2 , \hat(\xi), ^2\,d\xi\right)\ge \frac. Further mathematical uncertainty inequalities, including the above entropic uncertainty, hold between a function and its Fourier transform : H_x+H_\xi \ge \log(e/2)


Signal processing

In the context of signal processing, and in particular time–frequency analysis, uncertainty principles are referred to as the Gabor limit, after Dennis Gabor, or sometimes the ''Heisenberg–Gabor limit''. The basic result, which follows from "Benedicks's theorem", below, is that a function cannot be both time limited and band limited (a function and its Fourier transform cannot both have bounded domain)—see Bandlimiting#Bandlimited versus timelimited, bandlimited versus timelimited. Thus \sigma_t \cdot \sigma_f \ge \frac \approx 0.08 \text, where \sigma_t and \sigma_f are the standard deviations of the time and frequency estimates respectively. Stated alternatively, "One cannot simultaneously sharply localize a signal (function ) in both the time domain and frequency domain (, its Fourier transform)". When applied to Filter (signal processing), filters, the result implies that one cannot achieve high temporal resolution and frequency resolution at the same time; a concrete example are the Short-time Fourier transform#Resolution issues, resolution issues of the short-time Fourier transform—if one uses a wide window, one achieves good frequency resolution at the cost of temporal resolution, while a narrow window has the opposite trade-off. Alternate theorems give more precise quantitative results, and, in time–frequency analysis, rather than interpreting the (1-dimensional) time and frequency domains separately, one instead interprets the limit as a lower limit on the support of a function in the (2-dimensional) time–frequency plane. In practice, the Gabor limit limits the ''simultaneous'' time–frequency resolution one can achieve without interference; it is possible to achieve higher resolution, but at the cost of different components of the signal interfering with each other. As a result, in order to analyze signals where the Transient (acoustics), transients are important, the Wavelet Transform, wavelet transform is often used instead of the Fourier.


Discrete Fourier transform

Let \left \ := x_0, x_1, \ldots, x_ be a sequence of ''N'' complex numbers and \left \ := X_0, X_1, \ldots, X_, its discrete Fourier transform. Denote by \, x\, _0 the number of non-zero elements in the time sequence x_0,x_1,\ldots,x_ and by \, X\, _0 the number of non-zero elements in the frequency sequence X_0,X_1,\ldots,X_. Then, \, x\, _0 \cdot \, X\, _0 \ge N. This inequality is inequality (mathematics)#Sharp inequalities, sharp, with equality achieved when ''x'' or ''X'' is a Dirac mass, or more generally when ''x'' is a nonzero multiple of a Dirac comb supported on a subgroup of the integers modulo ''N'' (in which case ''X'' is also a Dirac comb supported on a complementary subgroup, and vice versa). More generally, if ''T'' and ''W'' are subsets of the integers modulo ''N'', let L_T,R_W : \ell^2(\mathbb Z/N\mathbb N)\to\ell^2(\mathbb Z/N\mathbb N) denote the time-limiting operator and bandlimiting, band-limiting operators, respectively. Then \, L_TR_W\, ^2 \le \frac where the norm is the operator norm of operators on the Hilbert space \ell^2(\mathbb Z/N\mathbb Z) of functions on the integers modulo ''N''. This inequality has implications for signal reconstruction. When ''N'' is a prime number, a stronger inequality holds: \, x\, _0 + \, X\, _0 \ge N + 1. Discovered by Terence Tao, this inequality is also sharp.


Benedicks's theorem

Amrein–Berthier and Benedicks's theorem intuitively says that the set of points where is non-zero and the set of points where is non-zero cannot both be small. Specifically, it is impossible for a function in and its Fourier transform to both be support of a function, supported on sets of finite Lebesgue measure. A more quantitative version is \, f\, _\leq Ce^ \bigl(\, f\, _ + \, \hat \, _ \bigr) ~. One expects that the factor may be replaced by , which is only known if either or is convex.


Hardy's uncertainty principle

The mathematician G. H. Hardy formulated the following uncertainty principle: it is not possible for and to both be "very rapidly decreasing". Specifically, if in L^2(\mathbb) is such that , f(x), \leq C(1+, x, )^Ne^ and , \hat(\xi), \leq C(1+, \xi, )^Ne^ (C>0,N an integer), then, if , while if , then there is a polynomial of degree such that f(x)=P(x)e^. This was later improved as follows: if f \in L^2(\mathbb^d) is such that \int_\int_, f(x), , \hat(\xi), \frac \, dx \, d\xi < +\infty ~, then f(x)=P(x)e^ ~, where is a polynomial of degree and is a real positive definite matrix. This result was stated in Beurling's complete works without proof and proved in Hörmander (the case d=1,N=0) and Bonami, Demange, and Jaming for the general case. Note that Hörmander–Beurling's version implies the case in Hardy's Theorem while the version by Bonami–Demange–Jaming covers the full strength of Hardy's Theorem. A different proof of Beurling's theorem based on Liouville's theorem appeared in ref. A full description of the case as well as the following extension to Schwartz class distributions appears in ref.


History

Werner Heisenberg Werner Karl Heisenberg () (5 December 1901 – 1 February 1976) was a German theoretical physicist and one of the main pioneers of the theory of quantum mechanics. He published his work in 1925 in a breakthrough paper. In the subsequent serie ...
formulated the uncertainty principle at
Niels Bohr Niels Henrik David Bohr (; 7 October 1885 – 18 November 1962) was a Danish physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922 ...
's institute in Copenhagen, while working on the mathematical foundations of quantum mechanics. In 1925, following pioneering work with Hendrik Kramers, Heisenberg developed
matrix mechanics Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. It was the first conceptually autonomous and logically consistent formulation of quantum mechanics. Its account of quantum j ...
, which replaced the ad hoc old quantum theory with modern quantum mechanics. The central premise was that the classical concept of motion does not fit at the quantum level, as electrons in an atom do not travel on sharply defined orbits. Rather, their motion is smeared out in a strange way: the Fourier transform of its time dependence only involves those frequencies that could be observed in the quantum jumps of their radiation. Heisenberg's paper did not admit any unobservable quantities like the exact position of the electron in an orbit at any time; he only allowed the theorist to talk about the Fourier components of the motion. Since the Fourier components were not defined at the classical frequencies, they could not be used to construct an exact trajectory, so that the formalism could not answer certain overly precise questions about where the electron was or how fast it was going. According to one account: "Heisenberg's paper marked a radical departure from previous attempts to solve atomic problems by making use of observable quantities only. 'My entire meagre efforts go toward killing off and suitably replacing the concept of the orbital paths that one cannot observe,' he wrote in a letter dated 9 July 1925." It was actually Einstein who first raised the problem to Heisenberg in 1926 upon their first real discussion.  Einstein had invited Heisenberg to his home for a discussion of matrix mechanics upon its introduction.  As Heisenberg describes the discussion: "On the way home, he questioned me about my background, my studies with Sommerfeld.  But on arrival he at once began with a central question about the philosophical foundation of the new quantum mechanics.  He pointed out to me that in my mathematical description the notion of 'electron path' did not occur at all, but that in a cloud-chamber the track of the electron can of course be observed directly.  It seemed to him absurd to claim that there was indeed an electron path in the cloud-chamber, but none in the interior of the atom." In this situation, of course, we [Heisenberg and Bohr] had many discussions, difficult discussions, because we all felt that the mathematical scheme of quantum or wave mechanics was already final.  It could not be changed, and we would have to do all our calculations from this scheme.  On the other hand, nobody knew how to represent in this scheme such a simple case as the path of an electron through a cloud chamber." In March 1926, working in Bohr's institute, Heisenberg realized that the non-commutativity implies the uncertainty principle. This implication provided a clear physical interpretation for the non-commutativity, and it laid the foundation for what became known as the Copenhagen interpretation of quantum mechanics. Heisenberg showed that the commutation relation implies an uncertainty, or in Bohr's language a complementarity (physics), complementarity. Any two variables that do not commute cannot be measured simultaneously—the more precisely one is known, the less precisely the other can be known. Heisenberg wrote:
It can be expressed in its simplest form as follows: One can never know with perfect accuracy both of those two important factors which determine the movement of one of the smallest particles—its position and its velocity. It is impossible to determine accurately ''both'' the position and the direction and speed of a particle ''at the same instant''.
In his celebrated 1927 paper, "Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik" ("On the Perceptual Content of Quantum Theoretical Kinematics and Mechanics"), Heisenberg established this expression as the minimum amount of unavoidable momentum disturbance caused by any position measurement, but he did not give a precise definition for the uncertainties Δx and Δp. Instead, he gave some plausible estimates in each case separately. In his Chicago lecture English translation ''The Physical Principles of Quantum Theory''. Chicago: University of Chicago Press, 1930. he refined his principle: Earle Hesse Kennard, Kennard in 1927 first proved the modern inequality: where , and , are the standard deviations of position and momentum. Heisenberg only proved relation () for the special case of Gaussian states.


Terminology and translation

Throughout the main body of his original 1927 paper, written in German, Heisenberg used the word "Ungenauigkeit" ("indeterminacy"), to describe the basic theoretical principle. Only in the endnote did he switch to the word "Unsicherheit" ("uncertainty"). When the English-language version of Heisenberg's textbook, ''The Physical Principles of the Quantum Theory'', was published in 1930, however, the translation "uncertainty" was used, and it became the more commonly used term in the English language thereafter.


Heisenberg's microscope

The principle is quite counter-intuitive, so the early students of quantum theory had to be reassured that naive measurements to violate it were bound always to be unworkable. One way in which Heisenberg originally illustrated the intrinsic impossibility of violating the uncertainty principle is by utilizing the observer effect of an imaginary microscope as a measuring device. He imagines an experimenter trying to measure the position and momentum of an electron by shooting a photon at it. * Problem 1 – If the photon has a short wavelength, and therefore, a large momentum, the position can be measured accurately. But the photon scatters in a random direction, transferring a large and uncertain amount of momentum to the electron. If the photon has a long wavelength and low momentum, the collision does not disturb the electron's momentum very much, but the scattering will reveal its position only vaguely. * Problem 2 – If a large aperture is used for the microscope, the electron's location can be well resolved (see Rayleigh criterion); but by the principle of conservation of momentum, the transverse momentum of the incoming photon affects the electron's beamline momentum and hence, the new momentum of the electron resolves poorly. If a small aperture is used, the accuracy of both resolutions is the other way around. The combination of these trade-offs implies that no matter what photon wavelength and aperture size are used, the product of the uncertainty in measured position and measured momentum is greater than or equal to a lower limit, which is (up to a small numerical factor) equal to Planck's constant. Heisenberg did not care to formulate the uncertainty principle as an exact limit, and preferred to use it instead, as a heuristic quantitative statement, correct up to small numerical factors, which makes the radically new noncommutativity of quantum mechanics inevitable.


Critical reactions

The Copenhagen interpretation of quantum mechanics and Heisenberg's Uncertainty Principle were, in fact, seen as twin targets by detractors who believed in an underlying determinism and Scientific realism, realism. According to the Copenhagen interpretation of quantum mechanics, there is no fundamental reality that the quantum state describes, just a prescription for calculating experimental results. There is no way to say what the state of a system fundamentally is, only what the result of observations might be. Albert Einstein believed that randomness is a reflection of our ignorance of some fundamental property of reality, while
Niels Bohr Niels Henrik David Bohr (; 7 October 1885 – 18 November 1962) was a Danish physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922 ...
believed that the probability distributions are fundamental and irreducible, and depend on which measurements we choose to perform. Bohr–Einstein debates, Einstein and Bohr debated the uncertainty principle for many years.


The ideal of the detached observer

Wolfgang Pauli called Einstein's fundamental objection to the uncertainty principle "the ideal of the detached observer" (phrase translated from the German):


Einstein's slit

The first of Einstein's thought experiments challenging the uncertainty principle went as follows: :Consider a particle passing through a slit of width . The slit introduces an uncertainty in momentum of approximately because the particle passes through the wall. But let us determine the momentum of the particle by measuring the recoil of the wall. In doing so, we find the momentum of the particle to arbitrary accuracy by conservation of momentum. Bohr's response was that the wall is quantum mechanical as well, and that to measure the recoil to accuracy , the momentum of the wall must be known to this accuracy before the particle passes through. This introduces an uncertainty in the position of the wall and therefore the position of the slit equal to , and if the wall's momentum is known precisely enough to measure the recoil, the slit's position is uncertain enough to disallow a position measurement. A similar analysis with particles diffracting through multiple slits is given by Richard Feynman.


Einstein's box

Bohr was present when Einstein proposed the thought experiment which has become known as Einstein's box. Einstein argued that "Heisenberg's uncertainty equation implied that the uncertainty in time was related to the uncertainty in energy, the product of the two being related to Planck's constant."Gamow, G., ''The great physicists from Galileo to Einstein'', Courier Dover, 1988, p.260. Consider, he said, an ideal box, lined with mirrors so that it can contain light indefinitely. The box could be weighed before a clockwork mechanism opened an ideal shutter at a chosen instant to allow one single photon to escape. "We now know, explained Einstein, precisely the time at which the photon left the box." "Now, weigh the box again. The change of mass tells the energy of the emitted light. In this manner, said Einstein, one could measure the energy emitted and the time it was released with any desired precision, in contradiction to the uncertainty principle." Bohr spent a sleepless night considering this argument, and eventually realized that it was flawed. He pointed out that if the box were to be weighed, say by a spring and a pointer on a scale, "since the box must move vertically with a change in its weight, there will be uncertainty in its vertical velocity and therefore an uncertainty in its height above the table. ... Furthermore, the uncertainty about the elevation above the Earth's surface will result in an uncertainty in the rate of the clock," because of Einstein's own theory of Gravitational time dilation, gravity's effect on time. "Through this chain of uncertainties, Bohr showed that Einstein's light box experiment could not simultaneously measure exactly both the energy of the photon and the time of its escape."


EPR paradox for entangled particles

Bohr was compelled to modify his understanding of the uncertainty principle after another thought experiment by Einstein. In 1935, Einstein, Podolsky and Rosen published an analysis of widely separated Quantum entanglement, entangled particles (EPR paradox). Measuring one particle, Einstein realized, would alter the probability distribution of the other, yet here the other particle could not possibly be disturbed. This example led Bohr to revise his understanding of the principle, concluding that the uncertainty was not caused by a direct interaction. But Einstein came to much more far-reaching conclusions from the same thought experiment. He believed the "natural basic assumption" that a complete description of reality would have to predict the results of experiments from "locally changing deterministic quantities" and therefore would have to include more information than the maximum possible allowed by the uncertainty principle. In 1964, John Stewart Bell showed that this assumption can be falsified, since it would imply a certain inequality between the probabilities of different experiments. Experimental results confirm the predictions of quantum mechanics, ruling out Einstein's basic assumption that led him to the suggestion of his ''hidden variables''. These hidden variables may be "hidden" because of an illusion that occurs during observations of objects that are too large or too small. This illusion can be likened to rotating fan blades that seem to pop in and out of existence at different locations and sometimes seem to be in the same place at the same time when observed. This same illusion manifests itself in the observation of subatomic particles. Both the fan blades and the subatomic particles are moving so fast that the illusion is seen by the observer. Therefore, it is possible that there would be predictability of the subatomic particles behavior and characteristics to a recording device capable of very high speed tracking....Ironically this fact is one of the best pieces of evidence supporting Karl Popper's philosophy of Falsifiability, invalidation of a theory by falsification-experiments. That is to say, here Einstein's "basic assumption" became falsified by Bell test experiments, experiments based on Bell's inequalities. For the objections of Karl Popper to the Heisenberg inequality itself, see below. While it is possible to assume that quantum mechanical predictions are due to nonlocal, hidden variables, and in fact David Bohm invented such a formulation, this resolution is not satisfactory to the vast majority of physicists. The question of whether a random outcome is predetermined by a nonlocal theory can be philosophical, and it can be potentially intractable. If the hidden variables were not constrained, they could just be a list of random digits that are used to produce the measurement outcomes. To make it sensible, the assumption of nonlocal hidden variables is sometimes augmented by a second assumption—that the size of the observable universe puts a limit on the computations that these variables can do. A nonlocal theory of this sort predicts that a quantum computer would encounter fundamental obstacles when attempting to factor numbers of approximately 10,000 digits or more; a potentially Shor's algorithm, achievable task in quantum mechanics.


Popper's criticism

Karl Popper approached the problem of indeterminacy as a logician and Philosophical realism, metaphysical realist. He disagreed with the application of the uncertainty relations to individual particles rather than to Quantum ensemble, ensembles of identically prepared particles, referring to them as "statistical scatter relations". In this statistical interpretation, a ''particular'' measurement may be made to arbitrary precision without invalidating the quantum theory. This directly contrasts with the Copenhagen interpretation of quantum mechanics, which is Determinism, non-deterministic but lacks local hidden variables. In 1934, Popper published ''Zur Kritik der Ungenauigkeitsrelationen'' (''Critique of the Uncertainty Relations'') in ''Naturwissenschaften'', and in the same year ''The Logic of Scientific Discovery, Logik der Forschung'' (translated and updated by the author as ''The Logic of Scientific Discovery'' in 1959), outlining his arguments for the statistical interpretation. In 1982, he further developed his theory in ''Quantum theory and the schism in Physics'', writing:
[Heisenberg's] formulae are, beyond all doubt, derivable ''statistical formulae'' of the quantum theory. But they have been ''habitually misinterpreted'' by those quantum theorists who said that these formulae can be interpreted as determining some upper limit to the ''precision of our measurements''. [original emphasis]
Popper proposed an experiment to Falsifiability, falsify the uncertainty relations, although he later withdrew his initial version after discussions with Carl Friedrich von Weizsäcker, Weizsäcker, Werner Heisenberg, Heisenberg, and Albert Einstein, Einstein; this experiment may have influenced the formulation of the EPR paradox, EPR experiment.


Many-worlds uncertainty

The many-worlds interpretation originally outlined by Hugh Everett III in 1957 is partly meant to reconcile the differences between Einstein's and Bohr's views by replacing Bohr's wave function collapse with an ensemble of deterministic and independent universes whose ''distribution'' is governed by
wave function A wave function in quantum physics is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements ...
s and the
Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of th ...
. Thus, uncertainty in the many-worlds interpretation follows from each observer within any universe having no knowledge of what goes on in the other universes.


Free will

Some scientists including Arthur Compton and Martin Heisenberg have suggested that the uncertainty principle, or at least the general probabilistic nature of quantum mechanics, could be evidence for the two-stage model of free will. One critique, however, is that apart from the basic role of quantum mechanics as a foundation for chemistry, Quantum biology, nontrivial biological mechanisms requiring quantum mechanics are unlikely, due to the rapid Quantum decoherence, decoherence time of quantum systems at room temperature. Proponents of this theory commonly say that this decoherence is overcome by both screening and decoherence-free subspaces found in biological cells.


Thermodynamics

There is reason to believe that violating the uncertainty principle also strongly implies the violation of the second law of thermodynamics. See Gibbs paradox.


See also

* Afshar experiment * Canonical commutation relation * Correspondence principle * Gromov's non-squeezing theorem * Discrete Fourier transform#Uncertainty principle * Einstein's thought experiments * Heisenbug * Introduction to quantum mechanics * Küpfmüller's uncertainty principle * Operationalization * Observer effect (information technology) * Observer effect (physics) * Quantum indeterminacy * Quantum non-equilibrium * Quantum tunnelling * ''Physics and Beyond'' (book) * Planck length * Stronger uncertainty relations * Weak measurement


Notes


References


External links

*
Matter as a Wave
– a chapter from an online textbook
Quantum mechanics: Myths and facts

Stanford Encyclopedia of Philosophy entry


at MathPages

* [http://scienceworld.wolfram.com/physics/UncertaintyPrinciple.html Eric Weisstein's World of Physics – Uncertainty principle]
John Baez on the time–energy uncertainty relation



Common Interpretation of Heisenberg's Uncertainty Principle Is Proved False
{{DEFAULTSORT:Uncertainty Principle Quantum mechanics Principles Mathematical physics Inequalities Werner Heisenberg Scientific laws 1927 in science 1927 in Germany