An electron–ion collider (EIC) is a type of
particle accelerator
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.
Large accelerators are used for fundamental research in particle ...
collider
A collider is a type of particle accelerator which brings two opposing particle beams together such that the particles collide. Colliders may either be ring accelerators or linear accelerators.
Colliders are used as a research tool in particle ...
designed to collide
spin-polarized beams of
electrons
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary particles because they have no ...
and
ions
An ion () is an atom or molecule with a net electrical charge.
The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
, in order to study the properties of nuclear matter in detail via
deep inelastic scattering
Deep inelastic scattering is the name given to a process used to probe the insides of hadrons (particularly the baryons, such as protons and neutrons), using electrons, muons and neutrinos. It provided the first convincing evidence of the reali ...
. In 2012, a whitepaper
[A. Accardi et al., "Electron Ion Collider: The Next QCD Frontier – Understanding the glue that binds us all"](_blank)
2012. was published, proposing the developing and building of an EIC accelerator, and in 2015, the
Department of Energy A Ministry of Energy or Department of Energy is a government department in some countries that typically oversees the production of fuel and electricity; in the United States, however, it manages nuclear weapons development and conducts energy-rel ...
Nuclear Science Advisory Committee (NSAC) named the construction of an electron–ion collider one of the top priorities for the near future in
nuclear physics
Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.
Nuclear physics should not be confused with atomic physics, which studies the ...
in the United States.
In 2020, The United States Department of Energy announced that an EIC will be built over the next ten years at Brookhaven National Laboratory (BNL) in Upton, New York, at an estimated cost of $1.6 to $2.6 billion.
[
On 18 September 2020, a ribbon-cutting ceremony was held at BNL, officially launching the development and building of the EIC.
]
Proposed designs
In the US, Brookhaven National Laboratory
Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island, and was formally established in 1947 at the site of Camp Upton, a former U.S. Army base and Japanese internment c ...
has a declared design for an EIC scheduled to be built in the 2020 decade.
In Europe, CERN
The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gene ...
has plans for the LHeC. There are also Chinese and Russian plans for an electron–ion collider.
eRHIC
Brookhaven National Laboratory's conceptual design, eRHIC, proposes upgrading the existing Relativistic Heavy Ion Collider
The Relativistic Heavy Ion Collider (RHIC ) is the first and one of only two operating heavy-ion colliders, and the only spin-polarized proton collider ever built. Located at Brookhaven National Laboratory (BNL) in Upton, New York, and used by an ...
, which collides beams of light to heavy ions including polarized protons, with a polarized electron facility. On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design was selected over the conceptual design put forward by Thomas Jefferson National Accelerator Facility as the design of a future EIC in the United States. In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy.[“U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility”]
2020.
LHeC
The LHeC would make use of the existing LHC accelerator and add an electron accelerator to collide electrons with the hadron
In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ele ...
s.
Technical challenges
Polarization
In order to allow understanding of spin dependence of the electron-nucleon collisions, both the ion beam and the electron beam must be polarized. Achieving and maintaining high levels of polarization is challenging. Nucleons and electrons pose different issues. Electron polarization is affected by synchrotron radiation
Synchrotron radiation (also known as magnetobremsstrahlung radiation) is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity (). It is produced artificially in ...
. This gives rise to both self polarization via the Sokolov Ternov effect and depolarization due to the effects of quantum fluctuations
In quantum physics, a quantum fluctuation (also known as a vacuum state fluctuation or vacuum fluctuation) is the temporary random change in the amount of energy in a point in space, as prescribed by Werner Heisenberg's uncertainty principle. ...
. Ignoring the effects of synchrotron radiation, the motion of the spin follows the Thomas BMT equation.
High luminosity achievement
The luminosity
Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a st ...
determines the rates of interactions between electrons and nucleons. The weaker a mode of interaction is, the higher luminosity is required to reach an adequate measurement of the process. The luminosity is inversely proportional to the product of the beam sizes of the two colliding species, which implies that the smaller the emittances of the beams, the larger the luminosity. Whereas the electron beam emittance (for a storage ring) is determined by an equilibrium between damping and diffusion from synchrotrotron radiation, the emittance for the ion beam is determined by the initially injected value. The ion beam emittance may be decreased via various methods of beam cooling, such as electron cooling
Electron cooling is a method to shrink the emittance (size, divergence, and energy spread) of a charged particle beam without removing particles from the beam. Since the number of particles remains unchanged and the space coordinates and their der ...
or stochastic cooling
Stochastic cooling is a form of particle beam cooling. It is used in some particle accelerators and storage rings to control the emittance of the particle beams in the machine. This process uses the electrical signals that the individual charg ...
. In addition, one must consider the effect of intrabeam scattering, which is largely a heating effect.
Scientific purpose
An electron–ion collider allows probing of the substructure of protons and neutrons via a high energy electron. Protons and neutrons are composed of quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s, interacting via the strong interaction
The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the n ...
mediated by gluon
A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind q ...
s. The general domain encompassing the study of these fundamental phenomena is nuclear physics
Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.
Nuclear physics should not be confused with atomic physics, which studies the ...
, with the low level generally accepted framework being Quantum Chromodynamics
In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type ...
, the 'chromo' resulting from the fact that quarks are described as having three different possible values for color charge
Color charge is a property of quarks and gluons that is related to the particles' strong interactions in the theory of quantum chromodynamics (QCD).
The "color charge" of quarks and gluons is completely unrelated to the everyday meanings of ...
(red, green or blue).
Some of the remaining mysteries associated with atomic nuclei include how nuclear properties such as spin
Spin or spinning most often refers to:
* Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning
* Spin, the rotation of an object around a central axis
* Spin (propaganda), an intentionally b ...
and mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementar ...
emerge from the lower level constituent dynamics of quarks and gluons. Formulations of these mysteries, encompassing research projects, include the proton spin crisis
The proton spin crisis (sometimes called the "proton spin puzzle") is a theoretical crisis precipitated by a 1987 experiment by the European Muon Collaboration (EMC),
which tried to determine the distribution of spin within the proton.
Physicis ...
and the proton radius puzzle
The proton radius puzzle is an unanswered problem in physics relating to the size of the proton. Historically the proton charge radius was measured by two independent methods, which converged to a value of about 0.877 femtometres (1 fm = 10−15 m ...
.
Collaboration
Electron–Ion Collider user group:
Funding
In the year 2022, the Office of Science in Department of Energy reported that the budget for Electron–Ion Collider would be $30M, while the project required $120M to meet its defined milestone in 2023, causing the EIC pre-construction schedule to be "stretched".
Previous electron–ion colliders
One electron–ion collider in the past was HERA
In ancient Greek religion, Hera (; grc-gre, Ἥρα, Hḗrā; grc, Ἥρη, Hḗrē, label=none in Ionic and Homeric Greek) is the goddess of marriage, women and family, and the protector of women during childbirth. In Greek mythology, she ...
in Hamburg
(male), (female) en, Hamburger(s),
Hamburgian(s)
, timezone1 = Central (CET)
, utc_offset1 = +1
, timezone1_DST = Central (CEST)
, utc_offset1_DST = +2
, postal ...
, Germany. Hera ran from 1992 to 2007 and collided electrons and protons at a center of mass energy of 318 GeV.
References
{{DEFAULTSORT:Electron-ion collider
Particle accelerators