Electrical Girl
   HOME

TheInfoList



OR:

Electricity is the set of
physical Physical may refer to: *Physical examination In a physical examination, medical examination, or clinical examination, a medical practitioner examines a patient for any possible medical signs or symptoms of a medical condition. It generally co ...
phenomena A phenomenon ( : phenomena) is an observable event. The term came into its modern philosophical usage through Immanuel Kant, who contrasted it with the noumenon, which ''cannot'' be directly observed. Kant was heavily influenced by Gottfried W ...
associated with the presence and motion of matter that has a property of electric charge. Electricity is related to
magnetism Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
, both being part of the phenomenon of electromagnetism, as described by Maxwell's equations. Various common phenomena are related to electricity, including lightning,
static electricity Static electricity is an imbalance of electric charges within or on the surface of a material or between materials. The charge remains until it is able to move away by means of an electric current or electrical discharge. Static electricity is na ...
, electric heating, electric discharges and many others. The presence of an electric charge, which can be either positive or negative, produces an
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
. The movement of electric charges is an
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving pa ...
and produces a
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
. When a charge is placed in a location with a non-zero electric field, a force will act on it. The magnitude of this force is given by Coulomb's law. If the charge moves, the electric field would be doing work on the electric charge. Thus we can speak of electric potential at a certain point in space, which is equal to the work done by an external agent in carrying a unit of positive charge from an arbitrarily chosen reference point to that point without any acceleration and is typically measured in volts. Electricity is at the heart of many modern technologies, being used for: *
Electric power Electric power is the rate at which electrical energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per second. Standard prefixes apply to watts as with other SI units: thousands, millions and billions o ...
where electric current is used to energise equipment; * Electronics which deals with
electrical circuit An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, ...
s that involve active electrical components such as vacuum tubes, transistors,
diode A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diode ...
s and
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s, and associated passive interconnection technologies. Electrical phenomena have been studied since antiquity, though progress in theoretical understanding remained slow until the seventeenth and eighteenth centuries. The theory of electromagnetism was developed in the 19th century, and by the end of that century electricity was being put to industrial and residential use by electrical engineers. The rapid expansion in electrical technology at this time transformed industry and society, becoming a driving force for the Second Industrial Revolution. Electricity's extraordinary versatility means it can be put to an almost limitless set of applications which include transport, heating, lighting, communications, and
computation Computation is any type of arithmetic or non-arithmetic calculation that follows a well-defined model (e.g., an algorithm). Mechanical or electronic devices (or, historically, people) that perform computations are known as ''computers''. An es ...
. Electrical power is now the backbone of modern industrial society.


History

Long before any knowledge of electricity existed, people were aware of shocks from
electric fish An electric fish is any fish that can generate electric fields. Most electric fish are also electroreceptive, meaning that they can sense electric fields. The only exception is the stargazer family. Electric fish, although a small minority, in ...
. Ancient Egyptian texts dating from 2750 BCE referred to these fish as the "Thunderer of the Nile", and described them as the "protectors" of all other fish. Electric fish were again reported millennia later by ancient Greek, Roman and Arabic naturalists and
physicians A physician (American English), medical practitioner (Commonwealth English), medical doctor, or simply doctor, is a health professional who practices medicine, which is concerned with promoting, maintaining or restoring health through th ...
. Several ancient writers, such as Pliny the Elder and
Scribonius Largus Scribonius Largus (c. 1-c. 50) was the court physician to the Roman emperor Claudius. About 47 AD, at the request of Gaius Julius Callistus, the emperor's freedman, he drew up a list of 271 prescriptions (''Compositiones''), most of them his own, ...
, attested to the numbing effect of
electric shock Electrical injury is a physiological reaction caused by electric current passing through the body. The injury depends on the density of the current, tissue resistance and duration of contact. Very small currents may be imperceptible or produce ...
s delivered by electric catfish and electric rays, and knew that such shocks could travel along conducting objects. Patients with ailments such as gout or
headache Headache is the symptom of pain in the face, head, or neck. It can occur as a migraine, tension-type headache, or cluster headache. There is an increased risk of depression in those with severe headaches. Headaches can occur as a result ...
were directed to touch electric fish in the hope that the powerful jolt might cure them. Ancient cultures around the Mediterranean knew that certain objects, such as rods of amber, could be rubbed with cat's fur to attract light objects like feathers. Thales of Miletus made a series of observations on
static electricity Static electricity is an imbalance of electric charges within or on the surface of a material or between materials. The charge remains until it is able to move away by means of an electric current or electrical discharge. Static electricity is na ...
around 600 BCE, from which he believed that friction rendered amber
magnetic Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particle ...
, in contrast to minerals such as magnetite, which needed no rubbing. Thales was incorrect in believing the attraction was due to a magnetic effect, but later science would prove a link between magnetism and electricity. According to a controversial theory, the Parthians may have had knowledge of
electroplating Electroplating, also known as electrochemical deposition or electrodeposition, is a process for producing a metal coating on a solid substrate through the reduction of cations of that metal by means of a direct electric current. The part to be ...
, based on the 1936 discovery of the Baghdad Battery, which resembles a galvanic cell, though it is uncertain whether the artifact was electrical in nature. Electricity would remain little more than an intellectual curiosity for millennia until 1600, when the English scientist William Gilbert wrote '' De Magnete'', in which he made a careful study of electricity and magnetism, distinguishing the lodestone effect from static electricity produced by rubbing amber. He coined the New Latin word ''electricus'' ("of amber" or "like amber", from ἤλεκτρον, ''elektron'', the Greek word for "amber") to refer to the property of attracting small objects after being rubbed. This association gave rise to the English words "electric" and "electricity", which made their first appearance in print in
Thomas Browne Sir Thomas Browne (; 19 October 160519 October 1682) was an English polymath and author of varied works which reveal his wide learning in diverse fields including science and medicine, religion and the esoteric. His writings display a deep curi ...
's '' Pseudodoxia Epidemica'' of 1646. Further work was conducted in the 17th and early 18th centuries by
Otto von Guericke Otto von Guericke ( , , ; spelled Gericke until 1666; November 20, 1602 – May 11, 1686 ; November 30, 1602 – May 21, 1686 ) was a German scientist, inventor, and politician. His pioneering scientific work, the development of experimental me ...
, Robert Boyle, Stephen Gray and
C. F. du Fay C. or c. may refer to: * Century, sometimes abbreviated as ''c.'' or ''C.'', a period of 100 years * Cent (currency), abbreviated ''c.'' or ''¢'', a monetary unit that equals of the basic unit of many currencies * Caius or Gaius, abbreviated as ...
. Later in the 18th century, Benjamin Franklin conducted extensive research in electricity, selling his possessions to fund his work. In June 1752 he is reputed to have attached a metal key to the bottom of a dampened kite string and flown the kite in a storm-threatened sky. A succession of sparks jumping from the key to the back of his hand showed that lightning was indeed electrical in nature. He also explained the apparently paradoxical behavior of the Leyden jar as a device for storing large amounts of electrical charge in terms of electricity consisting of both positive and negative charges. In 1775, Hugh Williamson reported a series of experiments to the Royal Society on the shocks delivered by the electric eel; that same year the surgeon and anatomist John Hunter described the structure of the fish's electric organs. In 1791,
Luigi Galvani Luigi Galvani (, also ; ; la, Aloysius Galvanus; 9 September 1737 – 4 December 1798) was an Italian physician, physicist, biologist and philosopher, who studied animal electricity. In 1780, he discovered that the muscles of dead frogs' legs ...
published his discovery of bioelectromagnetics, demonstrating that electricity was the medium by which neurons passed signals to the muscles.
Alessandro Volta Alessandro Giuseppe Antonio Anastasio Volta (, ; 18 February 1745 – 5 March 1827) was an Italian physicist, chemist and lay Catholic who was a pioneer of electricity and power who is credited as the inventor of the electric battery and the ...
's battery, or voltaic pile, of 1800, made from alternating layers of zinc and copper, provided scientists with a more reliable source of electrical energy than the electrostatic machines previously used. The recognition of electromagnetism, the unity of electric and magnetic phenomena, is due to
Hans Christian Ørsted Hans Christian Ørsted ( , ; often rendered Oersted in English; 14 August 17779 March 1851) was a Danish physicist and chemist who discovered that electric currents create magnetic fields, which was the first connection found between electricity ...
and
André-Marie Ampère André-Marie Ampère (, ; ; 20 January 177510 June 1836) was a French physicist and mathematician who was one of the founders of the science of classical electromagnetism, which he referred to as "electrodynamics". He is also the inventor of nu ...
in 1819–1820. Michael Faraday invented the electric motor in 1821, and Georg Ohm mathematically analysed the electrical circuit in 1827. Electricity and magnetism (and light) were definitively linked by James Clerk Maxwell, in particular in his " On Physical Lines of Force" in 1861 and 1862. While the early 19th century had seen rapid progress in electrical science, the late 19th century would see the greatest progress in
electrical engineering Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems which use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the l ...
. Through such people as
Alexander Graham Bell Alexander Graham Bell (, born Alexander Bell; March 3, 1847 – August 2, 1922) was a Scottish-born inventor, scientist and engineer who is credited with patenting the first practical telephone. He also co-founded the American Telephone and Te ...
, Ottó Bláthy, Thomas Edison, Galileo Ferraris, Oliver Heaviside, Ányos Jedlik, William Thomson, 1st Baron Kelvin, Charles Algernon Parsons, Werner von Siemens, Joseph Swan, Reginald Fessenden, Nikola Tesla and George Westinghouse, electricity turned from a scientific curiosity into an essential tool for modern life. In 1887, Heinrich Hertz discovered that electrodes illuminated with ultraviolet light create electric sparks more easily. In 1905, Albert Einstein published a paper that explained experimental data from the photoelectric effect as being the result of light energy being carried in discrete quantized packets, energising electrons. This discovery led to the
quantum In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
revolution. Einstein was awarded the Nobel Prize in Physics in 1921 for "his discovery of the law of the photoelectric effect". The photoelectric effect is also employed in photocells such as can be found in
solar panel A solar cell panel, solar electric panel, photo-voltaic (PV) module, PV panel or solar panel is an assembly of photovoltaic solar cells mounted in a (usually rectangular) frame, and a neatly organised collection of PV panels is called a photo ...
s and this is frequently used to make electricity commercially. The first solid-state device was the " cat's-whisker detector" first used in the 1900s in radio receivers. A whisker-like wire is placed lightly in contact with a solid crystal (such as a
germanium Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors s ...
crystal) to detect a radio signal by the contact junction effect. In a solid-state component, the current is confined to solid elements and compounds engineered specifically to switch and amplify it. Current flow can be understood in two forms: as negatively charged electrons, and as positively charged electron deficiencies called
holes A hole is an opening in or through a particular medium, usually a solid body. Holes occur through natural and artificial processes, and may be useful for various purposes, or may represent a problem needing to be addressed in many fields of en ...
. These charges and holes are understood in terms of quantum physics. The building material is most often a crystalline semiconductor. Solid-state electronics came into its own with the emergence of transistor technology. The first working transistor, a
germanium Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors s ...
-based
point-contact transistor The point-contact transistor was the first type of transistor to be successfully demonstrated. It was developed by research scientists John Bardeen and Walter Brattain at Bell Laboratories in December 1947. They worked in a group led by physicis ...
, was invented by
John Bardeen John Bardeen (; May 23, 1908 – January 30, 1991) was an American physicist and engineer. He is the only person to be awarded the Nobel Prize in Physics twice: first in 1956 with William Shockley and Walter Brattain for the invention of the tran ...
and Walter Houser Brattain at Bell Labs in 1947, followed by the bipolar junction transistor in 1948.


Concepts


Electric charge

The presence of charge gives rise to an electrostatic force: charges exert a
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
on each other, an effect that was known, though not understood, in antiquity. A lightweight ball suspended by a fine thread can be charged by touching it with a glass rod that has itself been charged by rubbing with a cloth. If a similar ball is charged by the same glass rod, it is found to repel the first: the charge acts to force the two balls apart. Two balls that are charged with a rubbed amber rod also repel each other. However, if one ball is charged by the glass rod, and the other by an amber rod, the two balls are found to attract each other. These phenomena were investigated in the late eighteenth century by Charles-Augustin de Coulomb, who deduced that charge manifests itself in two opposing forms. This discovery led to the well-known axiom: ''like-charged objects repel and opposite-charged objects attract''. The force acts on the charged particles themselves, hence charge has a tendency to spread itself as evenly as possible over a conducting surface. The magnitude of the electromagnetic force, whether attractive or repulsive, is given by Coulomb's law, which relates the force to the product of the charges and has an
inverse-square In science, an inverse-square law is any scientific law stating that a specified physical quantity is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental cause for this can be understo ...
relation to the distance between them. The electromagnetic force is very strong, second only in strength to the
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the n ...
, but unlike that force it operates over all distances. In comparison with the much weaker gravitational force, the electromagnetic force pushing two electrons apart is 1042 times that of the
gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
al attraction pulling them together. Charge originates from certain types of
subatomic particle In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a pr ...
s, the most familiar carriers of which are the electron and
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
. Electric charge gives rise to and interacts with the electromagnetic force, one of the four fundamental forces of nature. Experiment has shown charge to be a conserved quantity, that is, the net charge within an electrically isolated system will always remain constant regardless of any changes taking place within that system. Within the system, charge may be transferred between bodies, either by direct contact, or by passing along a conducting material, such as a wire. The informal term
static electricity Static electricity is an imbalance of electric charges within or on the surface of a material or between materials. The charge remains until it is able to move away by means of an electric current or electrical discharge. Static electricity is na ...
refers to the net presence (or 'imbalance') of charge on a body, usually caused when dissimilar materials are rubbed together, transferring charge from one to the other. The charge on electrons and protons is opposite in sign, hence an amount of charge may be expressed as being either negative or positive. By convention, the charge carried by electrons is deemed negative, and that by protons positive, a custom that originated with the work of Benjamin Franklin. The amount of charge is usually given the symbol ''Q'' and expressed in
coulomb The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). In the present version of the SI it is equal to the electric charge delivered by a 1 ampere constant current in 1 second and to elementary char ...
s; each electron carries the same charge of approximately −1.6022×10−19 
coulomb The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). In the present version of the SI it is equal to the electric charge delivered by a 1 ampere constant current in 1 second and to elementary char ...
. The proton has a charge that is equal and opposite, and thus +1.6022×10−19  coulomb. Charge is possessed not just by matter, but also by antimatter, each antiparticle bearing an equal and opposite charge to its corresponding particle. Charge can be measured by a number of means, an early instrument being the gold-leaf electroscope, which although still in use for classroom demonstrations, has been superseded by the electronic electrometer.


Electric current

The movement of electric charge is known as an
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving pa ...
, the intensity of which is usually measured in
ampere The ampere (, ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to elect ...
s. Current can consist of any moving charged particles; most commonly these are electrons, but any charge in motion constitutes a current. Electric current can flow through some things, electrical conductors, but will not flow through an electrical insulator. By historical convention, a positive current is defined as having the same direction of flow as any positive charge it contains, or to flow from the most positive part of a circuit to the most negative part. Current defined in this manner is called conventional current. The motion of negatively charged electrons around an electric circuit, one of the most familiar forms of current, is thus deemed positive in the ''opposite'' direction to that of the electrons. However, depending on the conditions, an electric current can consist of a flow of charged particles in either direction, or even in both directions at once. The positive-to-negative convention is widely used to simplify this situation. The process by which electric current passes through a material is termed electrical conduction, and its nature varies with that of the charged particles and the material through which they are travelling. Examples of electric currents include metallic conduction, where electrons flow through a
conductor Conductor or conduction may refer to: Music * Conductor (music), a person who leads a musical ensemble, such as an orchestra. * ''Conductor'' (album), an album by indie rock band The Comas * Conduction, a type of structured free improvisation ...
such as metal, and
electrolysis In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from n ...
, where ions (charged atoms) flow through liquids, or through plasmas such as electrical sparks. While the particles themselves can move quite slowly, sometimes with an average
drift velocity In physics, a drift velocity is the average velocity attained by charged particles, such as electrons, in a material due to an electric field. In general, an electron in a conductor will propagate randomly at the Fermi velocity, resulting in an a ...
only fractions of a millimetre per second, the
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
that drives them itself propagates at close to the speed of light, enabling electrical signals to pass rapidly along wires. Current causes several observable effects, which historically were the means of recognising its presence. That water could be decomposed by the current from a voltaic pile was discovered by Nicholson and
Carlisle Carlisle ( , ; from xcb, Caer Luel) is a city that lies within the Northern England, Northern English county of Cumbria, south of the Anglo-Scottish border, Scottish border at the confluence of the rivers River Eden, Cumbria, Eden, River C ...
in 1800, a process now known as
electrolysis In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from n ...
. Their work was greatly expanded upon by Michael Faraday in 1833. Current through a
resistance Resistance may refer to: Arts, entertainment, and media Comics * Either of two similarly named but otherwise unrelated comic book series, both published by Wildstorm: ** ''Resistance'' (comics), based on the video game of the same title ** ''T ...
causes localised heating, an effect James Prescott Joule studied mathematically in 1840. One of the most important discoveries relating to current was made accidentally by
Hans Christian Ørsted Hans Christian Ørsted ( , ; often rendered Oersted in English; 14 August 17779 March 1851) was a Danish physicist and chemist who discovered that electric currents create magnetic fields, which was the first connection found between electricity ...
in 1820, when, while preparing a lecture, he witnessed the current in a wire disturbing the needle of a magnetic compass. He had discovered electromagnetism, a fundamental interaction between electricity and magnetics. The level of electromagnetic emissions generated by electric arcing is high enough to produce
electromagnetic interference Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electros ...
, which can be detrimental to the workings of adjacent equipment. In engineering or household applications, current is often described as being either direct current (DC) or alternating current (AC). These terms refer to how the current varies in time. Direct current, as produced by example from a
battery Battery most often refers to: * Electric battery, a device that provides electrical power * Battery (crime), a crime involving unlawful physical contact Battery may also refer to: Energy source *Automotive battery, a device to provide power t ...
and required by most electronic devices, is a unidirectional flow from the positive part of a circuit to the negative. If, as is most common, this flow is carried by electrons, they will be travelling in the opposite direction. Alternating current is any current that reverses direction repeatedly; almost always this takes the form of a
sine wave A sine wave, sinusoidal wave, or just sinusoid is a curve, mathematical curve defined in terms of the ''sine'' trigonometric function, of which it is the graph of a function, graph. It is a type of continuous wave and also a Smoothness, smooth p ...
. Alternating current thus pulses back and forth within a conductor without the charge moving any net distance over time. The time-averaged value of an alternating current is zero, but it delivers energy in first one direction, and then the reverse. Alternating current is affected by electrical properties that are not observed under steady state direct current, such as
inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of the ...
and capacitance. These properties however can become important when circuitry is subjected to
transients Transience or transient may refer to: Music * ''Transient'' (album), a 2004 album by Gaelle * ''Transience'' (Steven Wilson album), 2015 * Transience (Wreckless Eric album) Science and engineering * Transient state, when a process variable or ...
, such as when first energised.


Electric field

The concept of the electric field was introduced by Michael Faraday. An electric field is created by a charged body in the space that surrounds it, and results in a force exerted on any other charges placed within the field. The electric field acts between two charges in a similar manner to the way that the gravitational field acts between two masses, and like it, extends towards infinity and shows an inverse square relationship with distance. However, there is an important difference. Gravity always acts in attraction, drawing two masses together, while the electric field can result in either attraction or repulsion. Since large bodies such as planets generally carry no net charge, the electric field at a distance is usually zero. Thus gravity is the dominant force at distance in the universe, despite being much weaker. An electric field generally varies in space, and its strength at any one point is defined as the force (per unit charge) that would be felt by a stationary, negligible charge if placed at that point. The conceptual charge, termed a ' test charge', must be vanishingly small to prevent its own electric field disturbing the main field and must also be stationary to prevent the effect of
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
s. As the electric field is defined in terms of
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
, and force is a vector, having both magnitude and direction, so it follows that an electric field is a vector field. The study of electric fields created by stationary charges is called
electrostatics Electrostatics is a branch of physics that studies electric charges at rest (static electricity). Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amber ...
. The field may be visualised by a set of imaginary lines whose direction at any point is the same as that of the field. This concept was introduced by Faraday, whose term ' lines of force' still sometimes sees use. The field lines are the paths that a point positive charge would seek to make as it was forced to move within the field; they are however an imaginary concept with no physical existence, and the field permeates all the intervening space between the lines. Field lines emanating from stationary charges have several key properties: first, that they originate at positive charges and terminate at negative charges; second, that they must enter any good conductor at right angles, and third, that they may never cross nor close in on themselves. A hollow conducting body carries all its charge on its outer surface. The field is therefore 0 at all places inside the body. This is the operating principal of the
Faraday cage A Faraday cage or Faraday shield is an enclosure used to block electromagnetic fields. A Faraday shield may be formed by a continuous covering of conductive material, or in the case of a Faraday cage, by a mesh of such materials. Faraday cage ...
, a conducting metal shell which isolates its interior from outside electrical effects. The principles of electrostatics are important when designing items of high-voltage equipment. There is a finite limit to the electric field strength that may be withstood by any medium. Beyond this point, electrical breakdown occurs and an electric arc causes flashover between the charged parts. Air, for example, tends to arc across small gaps at electric field strengths which exceed 30 kV per centimetre. Over larger gaps, its breakdown strength is weaker, perhaps 1 kV per centimetre. The most visible natural occurrence of this is lightning, caused when charge becomes separated in the clouds by rising columns of air, and raises the electric field in the air to greater than it can withstand. The voltage of a large lightning cloud may be as high as 100 MV and have discharge energies as great as 250 kWh. The field strength is greatly affected by nearby conducting objects, and it is particularly intense when it is forced to curve around sharply pointed objects. This principle is exploited in the lightning conductor, the sharp spike of which acts to encourage the lightning stroke to develop there, rather than to the building it serves to protect


Electric potential

The concept of electric potential is closely linked to that of the electric field. A small charge placed within an electric field experiences a force, and to have brought that charge to that point against the force requires work. The electric potential at any point is defined as the energy required to bring a unit test charge from an infinite distance slowly to that point. It is usually measured in volts, and one volt is the potential for which one joule of work must be expended to bring a charge of one
coulomb The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). In the present version of the SI it is equal to the electric charge delivered by a 1 ampere constant current in 1 second and to elementary char ...
from infinity. This definition of potential, while formal, has little practical application, and a more useful concept is that of electric potential difference, and is the energy required to move a unit charge between two specified points. An electric field has the special property that it is '' conservative'', which means that the path taken by the test charge is irrelevant: all paths between two specified points expend the same energy, and thus a unique value for potential difference may be stated. The volt is so strongly identified as the unit of choice for measurement and description of electric potential difference that the term voltage sees greater everyday usage. For practical purposes, it is useful to define a common reference point to which potentials may be expressed and compared. While this could be at infinity, a much more useful reference is the Earth itself, which is assumed to be at the same potential everywhere. This reference point naturally takes the name earth or
ground Ground may refer to: Geology * Land, the surface of the Earth not covered by water * Soil, a mixture of clay, sand and organic matter present on the surface of the Earth Electricity * Ground (electricity), the reference point in an electrical c ...
. Earth is assumed to be an infinite source of equal amounts of positive and negative charge, and is therefore electrically uncharged—and unchargeable. Electric potential is a
scalar quantity Scalar may refer to: *Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers *Scalar (physics), a physical quantity that can be described by a single element of a number field such a ...
, that is, it has only magnitude and not direction. It may be viewed as analogous to height: just as a released object will fall through a difference in heights caused by a gravitational field, so a charge will 'fall' across the voltage caused by an electric field. As relief maps show contour lines marking points of equal height, a set of lines marking points of equal potential (known as equipotentials) may be drawn around an electrostatically charged object. The equipotentials cross all lines of force at right angles. They must also lie parallel to a
conductor Conductor or conduction may refer to: Music * Conductor (music), a person who leads a musical ensemble, such as an orchestra. * ''Conductor'' (album), an album by indie rock band The Comas * Conduction, a type of structured free improvisation ...
's surface, otherwise this would produce a force that will move the charge carriers to even the potential of the surface. The electric field was formally defined as the force exerted per unit charge, but the concept of potential allows for a more useful and equivalent definition: the electric field is the local gradient of the electric potential. Usually expressed in volts per metre, the vector direction of the field is the line of greatest slope of potential, and where the equipotentials lie closest together.


Electromagnets

Ørsted's discovery in 1821 that a
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
existed around all sides of a wire carrying an electric current indicated that there was a direct relationship between electricity and magnetism. Moreover, the interaction seemed different from gravitational and electrostatic forces, the two forces of nature then known. The force on the compass needle did not direct it to or away from the current-carrying wire, but acted at right angles to it. Ørsted's words were that "the electric conflict acts in a revolving manner." The force also depended on the direction of the current, for if the flow was reversed, then the force did too. Ørsted did not fully understand his discovery, but he observed the effect was reciprocal: a current exerts a force on a magnet, and a magnetic field exerts a force on a current. The phenomenon was further investigated by Ampère, who discovered that two parallel current-carrying wires exerted a force upon each other: two wires conducting currents in the same direction are attracted to each other, while wires containing currents in opposite directions are forced apart. The interaction is mediated by the magnetic field each current produces and forms the basis for the international definition of the ampere. This relationship between magnetic fields and currents is extremely important, for it led to Michael Faraday's invention of the electric motor in 1821. Faraday's
homopolar motor A homopolar motor is a direct current electric motor with two magnetic poles, the conductors of which always cut unidirectional lines of magnetic flux by rotating a conductor around a fixed axis so that the conductor is at right angles to a s ...
consisted of a
permanent magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, ...
sitting in a pool of
mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
. A current was allowed through a wire suspended from a pivot above the magnet and dipped into the mercury. The magnet exerted a tangential force on the wire, making it circle around the magnet for as long as the current was maintained. Experimentation by Faraday in 1831 revealed that a wire moving perpendicular to a magnetic field developed a potential difference between its ends. Further analysis of this process, known as
electromagnetic induction Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk ...
, enabled him to state the principle, now known as
Faraday's law of induction Faraday's law of induction (briefly, Faraday's law) is a basic law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf)—a phenomenon known as electromagnetic inducti ...
, that the potential difference induced in a closed circuit is proportional to the rate of change of
magnetic flux In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted or . The SI unit of magnetic flux is the weber ( ...
through the loop. Exploitation of this discovery enabled him to invent the first electrical generator in 1831, in which he converted the mechanical energy of a rotating copper disc to electrical energy.
Faraday's disc A homopolar generator is a DC electrical generator comprising an electrically conductive disc or cylinder rotating in a plane perpendicular to a uniform static magnetic field. A potential difference is created between the center of the disc and th ...
was inefficient and of no use as a practical generator, but it showed the possibility of generating electric power using magnetism, a possibility that would be taken up by those that followed on from his work.


Electrochemistry

The ability of chemical reactions to produce electricity, and conversely the ability of electricity to drive chemical reactions has a wide array of uses. Electrochemistry has always been an important part of electricity. From the initial invention of the Voltaic pile, electrochemical cells have evolved into the many different types of batteries, electroplating and electrolysis cells. Aluminium is produced in vast quantities this way, and many portable devices are electrically powered using rechargeable cells.


Electric circuits

An electric circuit is an interconnection of electric components such that electric charge is made to flow along a closed path (a circuit), usually to perform some useful task. The components in an electric circuit can take many forms, which can include elements such as
resistor A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active el ...
s, capacitors, switches, transformers and electronics.
Electronic circuit An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow. It is a type of electrical ...
s contain active components, usually semiconductors, and typically exhibit
non-linear In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ...
behaviour, requiring complex analysis. The simplest electric components are those that are termed passive and linear: while they may temporarily store energy, they contain no sources of it, and exhibit linear responses to stimuli. The
resistor A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active el ...
is perhaps the simplest of passive circuit elements: as its name suggests, it resists the current through it, dissipating its energy as heat. The resistance is a consequence of the motion of charge through a conductor: in metals, for example, resistance is primarily due to collisions between electrons and ions.
Ohm's law Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, one arrives at the usual mathematical equat ...
is a basic law of circuit theory, stating that the current passing through a resistance is directly proportional to the potential difference across it. The resistance of most materials is relatively constant over a range of temperatures and currents; materials under these conditions are known as 'ohmic'. The
ohm Ohm (symbol Ω) is a unit of electrical resistance named after Georg Ohm. Ohm or OHM may also refer to: People * Georg Ohm (1789–1854), German physicist and namesake of the term ''ohm'' * Germán Ohm (born 1936), Mexican boxer * Jörg Ohm (b ...
, the unit of resistance, was named in honour of Georg Ohm, and is symbolised by the Greek letter Ω. 1 Ω is the resistance that will produce a potential difference of one volt in response to a current of one amp. The capacitor is a development of the Leyden jar and is a device that can store charge, and thereby storing electrical energy in the resulting field. It consists of two conducting plates separated by a thin insulating dielectric layer; in practice, thin metal foils are coiled together, increasing the surface area per unit volume and therefore the capacitance. The unit of capacitance is the
farad The farad (symbol: F) is the unit of electrical capacitance, the ability of a body to store an electrical charge, in the International System of Units (SI). It is named after the English physicist Michael Faraday (1791–1867). In SI base unit ...
, named after Michael Faraday, and given the symbol ''F'': one farad is the capacitance that develops a potential difference of one volt when it stores a charge of one coulomb. A capacitor connected to a voltage supply initially causes a current as it accumulates charge; this current will however decay in time as the capacitor fills, eventually falling to zero. A capacitor will therefore not permit a steady state current, but instead blocks it. The inductor is a conductor, usually a coil of wire, that stores energy in a magnetic field in response to the current through it. When the current changes, the magnetic field does too, inducing a voltage between the ends of the conductor. The induced voltage is proportional to the time rate of change of the current. The constant of proportionality is termed the
inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of the ...
. The unit of inductance is the henry, named after
Joseph Henry Joseph Henry (December 17, 1797– May 13, 1878) was an American scientist who served as the first Secretary of the Smithsonian Institution. He was the secretary for the National Institute for the Promotion of Science, a precursor of the Smith ...
, a contemporary of Faraday. One henry is the inductance that will induce a potential difference of one volt if the current through it changes at a rate of one ampere per second. The inductor's behaviour is in some regards converse to that of the capacitor: it will freely allow an unchanging current, but opposes a rapidly changing one.


Electric power

Electric power is the rate at which electric energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per
second The second (symbol: s) is the unit of time in the International System of Units (SI), historically defined as of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds ...
. Electric power, like mechanical power, is the rate of doing work, measured in watts, and represented by the letter ''P''. The term ''wattage'' is used colloquially to mean "electric power in watts." The electric power in watts produced by an electric current ''I'' consisting of a charge of ''Q'' coulombs every ''t'' seconds passing through an electric potential ( voltage) difference of ''V'' is :P = \text = \frac = IV \, where :''Q'' is electric charge in
coulomb The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). In the present version of the SI it is equal to the electric charge delivered by a 1 ampere constant current in 1 second and to elementary char ...
s :''t'' is time in seconds :''I'' is electric current in
ampere The ampere (, ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to elect ...
s :''V'' is electric potential or voltage in volts Electricity generation is often done by a process of converting mechanical energy to electricity. Devices such as steam turbines or
gas turbines A gas turbine, also called a combustion turbine, is a type of continuous flow internal combustion engine. The main parts common to all gas turbine engines form the power-producing part (known as the gas generator or core) and are, in the directi ...
are involved in the production of the mechanical energy, which is passed on to
electric generator In electricity generation, a generator is a device that converts motive power (mechanical energy) or fuel-based power (chemical energy) into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas ...
s which produce the electricity. Electricity can also be supplied by chemical sources such as electric batteries or by other means from a wide variety of sources of energy. Electric power is generally supplied to businesses and homes by the electric power industry. Electricity is usually sold by the
kilowatt hour A kilowatt-hour (unit symbol: kW⋅h or kW h; commonly written as kWh) is a unit of energy: one kilowatt of power for one hour. In terms of SI derived units with special names, it equals 3.6 megajoules (MJ). Kilowatt-hours are a common bil ...
(3.6 MJ) which is the product of power in kilowatts multiplied by running time in hours. Electric utilities measure power using
electricity meter North American domestic analog electricity meter. Electricity meter with transparent plastic case (Israel) North American domestic electronic electricity meter An electricity meter, electric meter, electrical meter, energy meter, or kilowa ...
s, which keep a running total of the electric energy delivered to a customer. Unlike fossil fuels, electricity is a low entropy form of energy and can be converted into motion or many other forms of energy with high efficiency.


Electronics

Electronics deals with
electrical circuit An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, ...
s that involve active electrical components such as vacuum tubes, transistors,
diode A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diode ...
s, optoelectronics,
sensor A sensor is a device that produces an output signal for the purpose of sensing a physical phenomenon. In the broadest definition, a sensor is a device, module, machine, or subsystem that detects events or changes in its environment and sends ...
s and
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s, and associated passive interconnection technologies. The
nonlinear In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ...
behaviour of active components and their ability to control electron flows makes amplification of weak signals possible and electronics is widely used in
information processing Information processing is the change (processing) of information in any manner detectable by an observer. As such, it is a process that ''describes'' everything that happens (changes) in the universe, from the falling of a rock (a change in posit ...
, telecommunications, and signal processing. The ability of electronic devices to act as switches makes digital information processing possible. Interconnection technologies such as circuit boards, electronics packaging technology, and other varied forms of communication infrastructure complete circuit functionality and transform the mixed components into a regular working
system A system is a group of Interaction, interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment (systems), environment, is described by its boundaries, ...
. Today, most electronic devices use semiconductor components to perform electron control. The study of semiconductor devices and related technology is considered a branch of
solid state physics Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the l ...
, whereas the design and construction of
electronic circuit An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow. It is a type of electrical ...
s to solve practical problems come under
electronics engineering Electronics engineering is a sub-discipline of electrical engineering which emerged in the early 20th century and is distinguished by the additional use of active components such as semiconductor devices to amplify and control electric current f ...
.


Electromagnetic wave

Faraday's and Ampère's work showed that a time-varying magnetic field acted as a source of an electric field, and a time-varying electric field was a source of a magnetic field. Thus, when either field is changing in time, then a field of the other is necessarily induced. Such a phenomenon has the properties of a wave, and is naturally referred to as an electromagnetic wave. Electromagnetic waves were analysed theoretically by James Clerk Maxwell in 1864. Maxwell developed a set of equations that could unambiguously describe the interrelationship between electric field, magnetic field, electric charge, and electric current. He could moreover prove that such a wave would necessarily travel at the speed of light, and thus light itself was a form of electromagnetic radiation.
Maxwell's Laws Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. T ...
, which unify light, fields, and charge are one of the great milestones of theoretical physics. Thus, the work of many researchers enabled the use of electronics to convert signals into
high frequency High frequency (HF) is the ITU designation for the range of radio frequency electromagnetic waves (radio waves) between 3 and 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten ...
oscillating currents, and via suitably shaped conductors, electricity permits the transmission and reception of these signals via radio waves over very long distances.


Production and uses


Generation and transmission

In the 6th century BC, the Greek philosopher Thales of Miletus experimented with amber rods and these experiments were the first studies into the production of electrical energy. While this method, now known as the
triboelectric effect The triboelectric effect (also known as triboelectric charging) is a type of contact electrification on which certain materials become electrically charged after they are separated from a different material with which they were in contact. Rubb ...
, can lift light objects and generate sparks, it is extremely inefficient. It was not until the invention of the voltaic pile in the eighteenth century that a viable source of electricity became available. The voltaic pile, and its modern descendant, the
electrical battery An electric battery is a source of electric power consisting of one or more electrochemical cells with external connections for powering electrical devices. When a battery is supplying power, its positive terminal is the cathode and its negati ...
, store energy chemically and make it available on demand in the form of electrical energy. The battery is a versatile and very common power source which is ideally suited to many applications, but its energy storage is finite, and once discharged it must be disposed of or recharged. For large electrical demands electrical energy must be generated and transmitted continuously over conductive transmission lines. Electrical power is usually generated by electro-mechanical generators driven by
steam Steam is a substance containing water in the gas phase, and sometimes also an aerosol of liquid water droplets, or air. This may occur due to evaporation or due to boiling, where heat is applied until water reaches the enthalpy of vaporization ...
produced from
fossil fuel A fossil fuel is a hydrocarbon-containing material formed naturally in the Earth's crust from the remains of dead plants and animals that is extracted and burned as a fuel. The main fossil fuels are coal, oil, and natural gas. Fossil fuels m ...
combustion, or the heat released from nuclear reactions; or from other sources such as kinetic energy extracted from wind or flowing water. The modern
steam turbine A steam turbine is a machine that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft. Its modern manifestation was invented by Charles Parsons in 1884. Fabrication of a modern steam turbin ...
invented by
Sir Charles Parsons Sir Charles Algernon Parsons, (13 June 1854 – 11 February 1931) was an Anglo-Irish engineer, best known for his invention of the compound steam turbine, and as the eponym of C. A. Parsons and Company. He worked as an engineer on dy ...
in 1884 today generates about 80 percent of the
electric power Electric power is the rate at which electrical energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per second. Standard prefixes apply to watts as with other SI units: thousands, millions and billions o ...
in the world using a variety of heat sources. Such generators bear no resemblance to Faraday's homopolar disc generator of 1831, but they still rely on his electromagnetic principle that a conductor linking a changing magnetic field induces a potential difference across its ends. The invention in the late nineteenth century of the transformer meant that electrical power could be transmitted more efficiently at a higher voltage but lower current. Efficient electrical transmission meant in turn that electricity could be generated at centralised power stations, where it benefited from economies of scale, and then be despatched relatively long distances to where it was needed. Since electrical energy cannot easily be stored in quantities large enough to meet demands on a national scale, at all times exactly as much must be produced as is required. This requires electricity utilities to make careful predictions of their electrical loads, and maintain constant co-ordination with their power stations. A certain amount of generation must always be held in reserve to cushion an electrical grid against inevitable disturbances and losses. Demand for electricity grows with great rapidity as a nation modernises and its economy develops. The United States showed a 12% increase in demand during each year of the first three decades of the twentieth century, a rate of growth that is now being experienced by emerging economies such as those of India or China. Historically, the growth rate for electricity demand has outstripped that for other forms of energy. Environmental concerns with electricity generation have led to an increased focus on generation from
renewable sources A renewable resource, also known as a flow resource, is a natural resource which will replenish to replace the portion depleted by usage and consumption, either through natural reproduction or other recurring processes in a finite amount of ti ...
, in particular from wind and
solar Solar may refer to: Astronomy * Of or relating to the Sun ** Solar telescope, a special purpose telescope used to observe the Sun ** A device that utilizes solar energy (e.g. "solar panels") ** Solar calendar, a calendar whose dates indicate t ...
. While debate can be expected to continue over the environmental impact of different means of electricity production, its final form is relatively clean.


Applications

Electricity is a very convenient way to transfer energy, and it has been adapted to a huge, and growing, number of uses. The invention of a practical incandescent light bulb in the 1870s led to lighting becoming one of the first publicly available applications of electrical power. Although electrification brought with it its own dangers, replacing the naked flames of gas lighting greatly reduced fire hazards within homes and factories. Public utilities were set up in many cities targeting the burgeoning market for electrical lighting. In the late 20th century and in modern times, the trend has started to flow in the direction of deregulation in the electrical power sector. The resistive
Joule heating Joule heating, also known as resistive, resistance, or Ohmic heating, is the process by which the passage of an electric current through a conductor (material), conductor produces heat. Joule's first law (also just Joule's law), also known in c ...
effect employed in filament light bulbs also sees more direct use in electric heating. While this is versatile and controllable, it can be seen as wasteful, since most electrical generation has already required the production of heat at a power station. A number of countries, such as Denmark, have issued legislation restricting or banning the use of resistive electric heating in new buildings. Electricity is however still a highly practical energy source for heating and refrigeration, with air conditioning/ heat pumps representing a growing sector for electricity demand for heating and cooling, the effects of which electricity utilities are increasingly obliged to accommodate. Electricity is used within telecommunications, and indeed the electrical telegraph, demonstrated commercially in 1837 by Cooke and Wheatstone, was one of its earliest applications. With the construction of first
transcontinental Transcontinental may refer to: Arts, entertainment, and media * "Transcontinental", a song by the band Pedro the Lion from the album ''Achilles Heel'' * TC Transcontinental, a publishing, media and marketing company based in Canada, a subsidiary o ...
, and then transatlantic, telegraph systems in the 1860s, electricity had enabled communications in minutes across the globe.
Optical fibre An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to ...
and satellite communication have taken a share of the market for communications systems, but electricity can be expected to remain an essential part of the process. The effects of electromagnetism are most visibly employed in the electric motor, which provides a clean and efficient means of motive power. A stationary motor such as a winch is easily provided with a supply of power, but a motor that moves with its application, such as an
electric vehicle An electric vehicle (EV) is a vehicle that uses one or more electric motors for propulsion. It can be powered by a collector system, with electricity from extravehicular sources, or it can be powered autonomously by a battery (sometimes cha ...
, is obliged to either carry along a power source such as a battery, or to collect current from a sliding contact such as a pantograph. Electrically powered vehicles are used in public transportation, such as electric buses and trains, and an increasing number of battery-powered
electric car An electric car, battery electric car, or all-electric car is an automobile that is propelled by one or more electric motors, using only energy stored in batteries. Compared to internal combustion engine (ICE) vehicles, electric cars are quie ...
s in private ownership. Electronic devices make use of the transistor, perhaps one of the most important inventions of the twentieth century, and a fundamental building block of all modern circuitry. A modern
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
may contain many billions of miniaturised transistors in a region only a few centimetres square.


Electricity and the natural world


Physiological effects

A voltage applied to a human body causes an electric current through the tissues, and although the relationship is non-linear, the greater the voltage, the greater the current. The threshold for perception varies with the supply frequency and with the path of the current, but is about 0.1 mA to 1 mA for mains-frequency electricity, though a current as low as a microamp can be detected as an
electrovibration The history of electrovibration goes back to 1954. It was first discovered by accident and E. Mallinckrodt, A. L. Hughes and W. Sleator Jr. reported “... that dragging a dry finger over a conductive surface covered with a thin insulating layer a ...
effect under certain conditions. If the current is sufficiently high, it will cause muscle contraction, fibrillation of the heart, and tissue burns. The lack of any visible sign that a conductor is electrified makes electricity a particular hazard. The pain caused by an electric shock can be intense, leading electricity at times to be employed as a method of torture. Death caused by an electric shock is referred to as
electrocution Electrocution is death or severe injury caused by electric shock from electric current passing through the body. The word is derived from "electro" and "execution", but it is also used for accidental death. The term "electrocution" was coined ...
. Electrocution is still the means of judicial execution in some jurisdictions, though its use has become rarer in recent times.


Electrical phenomena in nature

Electricity is not a human invention, and may be observed in several forms in nature, a prominent manifestation of which is lightning. Many interactions familiar at the macroscopic level, such as touch, friction or chemical bonding, are due to interactions between electric fields on the atomic scale. The Earth's magnetic field is thought to arise from a natural dynamo of circulating currents in the planet's core. Certain crystals, such as quartz, or even
sugar Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose, fructose, and galactose. Compound sugars, also called disaccharides or double ...
, generate a potential difference across their faces when subjected to external pressure. This phenomenon is known as piezoelectricity, from the Greek ''piezein'' (πιέζειν), meaning to press, and was discovered in 1880 by
Pierre Pierre is a masculine given name. It is a French form of the name Peter. Pierre originally meant "rock" or "stone" in French (derived from the Greek word πέτρος (''petros'') meaning "stone, rock", via Latin "petra"). It is a translation ...
and Jacques Curie. The effect is reciprocal, and when a piezoelectric material is subjected to an electric field, a small change in physical dimensions takes place. §Bioelectrogenesis in microbial life is a prominent phenomenon in soils and sediment ecology resulting from anaerobic respiration. The microbial fuel cell mimics this ubiquitous natural phenomenon. Some organisms, such as sharks, are able to detect and respond to changes in electric fields, an ability known as electroreception, while others, termed
electrogenic Electroreception and electrogenesis are the closely-related biological abilities to perceive electrical stimuli and to generate electric fields. Both are used to locate prey; stronger electric discharges are used in a few groups of fishes to st ...
, are able to generate voltages themselves to serve as a predatory or defensive weapon; these are
electric fish An electric fish is any fish that can generate electric fields. Most electric fish are also electroreceptive, meaning that they can sense electric fields. The only exception is the stargazer family. Electric fish, although a small minority, in ...
in different orders. The order
Gymnotiformes The Gymnotiformes are an order of teleost bony fishes commonly known as Neotropical knifefish or South American knifefish. They have long bodies and swim using undulations of their elongated anal fin. Found almost exclusively in fresh water (the ...
, of which the best known example is the electric eel, detect or stun their prey via high voltages generated from modified muscle cells called
electrocytes file:Elektroplax_Rochen.png, An electric ray (Torpediniformes) showing location of paired electric organs in the head, and electrocytes stacked within it In biology, the electric organ is an organ that an electric fish uses to create an electric ...
. All animals transmit information along their cell membranes with voltage pulses called action potentials, whose functions include communication by the nervous system between neurons and
muscle Skeletal muscles (commonly referred to as muscles) are organs of the vertebrate muscular system and typically are attached by tendons to bones of a skeleton. The muscle cells of skeletal muscles are much longer than in the other types of muscl ...
s. An electric shock stimulates this system, and causes muscles to contract. Action potentials are also responsible for coordinating activities in certain plants.


Cultural perception

In 1850,
William Gladstone William Ewart Gladstone ( ; 29 December 1809 – 19 May 1898) was a British statesman and Liberal politician. In a career lasting over 60 years, he served for 12 years as Prime Minister of the United Kingdom, spread over four non-conse ...
asked the scientist Michael Faraday why electricity was valuable. Faraday answered, “One day sir, you may tax it.” In the 19th and early 20th century, electricity was not part of the everyday life of many people, even in the industrialised Western world. The popular culture of the time accordingly often depicted it as a mysterious, quasi-magical force that can slay the living, revive the dead or otherwise bend the laws of nature. This attitude began with the 1771 experiments of
Luigi Galvani Luigi Galvani (, also ; ; la, Aloysius Galvanus; 9 September 1737 – 4 December 1798) was an Italian physician, physicist, biologist and philosopher, who studied animal electricity. In 1780, he discovered that the muscles of dead frogs' legs ...
in which the legs of dead frogs were shown to twitch on application of
animal electricity Galvanism is a term invented by the late 18th-century physicist and chemist Alessandro Volta to refer to the generation of electric current by chemical action. The term also came to refer to the discoveries of its namesake, Luigi Galvani, specif ...
. "Revitalization" or resuscitation of apparently dead or drowned persons was reported in the medical literature shortly after Galvani's work. These results were known to Mary Shelley when she authored '' Frankenstein'' (1819), although she does not name the method of revitalization of the monster. The revitalization of monsters with electricity later became a stock theme in horror films. As the public familiarity with electricity as the lifeblood of the Second Industrial Revolution grew, its wielders were more often cast in a positive light, such as the workers who "finger death at their gloves' end as they piece and repiece the living wires" in Rudyard Kipling's 1907 poem ''
Sons of Martha "The Sons of Martha" is a poem written by Rudyard Kipling. It is inspired by the biblical story of Jesus at the home of Martha and Mary. It celebrates the care and dedication of workers–engineers, mechanics, and builders–to provide for the saf ...
''. Electrically powered vehicles of every sort featured large in adventure stories such as those of
Jules Verne Jules Gabriel Verne (;''Longman Pronunciation Dictionary''. ; 8 February 1828 – 24 March 1905) was a French novelist, poet, and playwright. His collaboration with the publisher Pierre-Jules Hetzel led to the creation of the ''Voyages extraor ...
and the '' Tom Swift'' books. The masters of electricity, whether fictional or real—including scientists such as Thomas Edison,
Charles Steinmetz Charles Proteus Steinmetz (born Karl August Rudolph Steinmetz, April 9, 1865 – October 26, 1923) was a German-born American mathematician and electrical engineer and professor at Union College. He fostered the development of alternating ...
or Nikola Tesla—were popularly conceived of as having wizard-like powers. With electricity ceasing to be a novelty and becoming a necessity of everyday life in the later half of the 20th century, it required particular attention by popular culture only when it ''stops'' flowing, an event that usually signals disaster. The people who ''keep'' it flowing, such as the nameless hero of Jimmy Webb’s song " Wichita Lineman" (1968), are still often cast as heroic, wizard-like figures.


See also

* Ampère's circuital law, connects the direction of an electric current and its associated magnetic currents. * Electric potential energy, the potential energy of a system of charges * Electricity market, the sale of electrical energy * Etymology of ''electricity'', the origin of the word ''electricity'' and its current different usages * Hydraulic analogy, an analogy between the flow of water and electric current


Notes


References

* * * * * * *


External links


''Basic Concepts of Electricity''
chapter fro

book an
series

"One-Hundred Years of Electricity", May 1931, Popular Mechanics


* ttp://www.worldstandards.eu/electricity/plugs-and-sockets/ Electricity around the world
Electricity Misconceptions




* ttp://water.worldbank.org/water/publications/water-electricity-and-poor-who-benefits-utility-subsidies/ World Bank report on Water, Electricity and Utility subsidies {{Authority control