HOME

TheInfoList



OR:

Eukaryotic translation initiation factor 4 G (eIF4G) is a protein involved in eukaryotic translation initiation and is a component of the
eIF4F Eukaryotic initiation factor 4F (eIF4F) is a heterotrimeric protein complex that binds the 5' cap of messenger RNAs (mRNAs) to promote eukaryotic translation initiation. The eIF4F complex is composed of three non-identical subunits: the DEAD- ...
cap-binding complex. Orthologs of eIF4G have been studied in multiple species, including
humans Humans (''Homo sapiens'') are the most abundant and widespread species of primate, characterized by bipedalism and exceptional cognitive skills due to a large and complex brain. This has enabled the development of advanced tools, culture, ...
,
yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to constitut ...
, and
wheat Wheat is a grass widely cultivated for its seed, a cereal grain that is a worldwide staple food. The many species of wheat together make up the genus ''Triticum'' ; the most widely grown is common wheat (''T. aestivum''). The archaeologi ...
. However, eIF4G is exclusively found in
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined **Domain of definition of a partial function **Natural domain of a partial function **Domain of holomorphy of a function * Do ...
Eukarya Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
, and not in domains
Bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among ...
or
Archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebac ...
, which do not have capped mRNA. As such, eIF4G structure and function may vary between species, although the human
EIF4G1 Eukaryotic translation initiation factor 4 gamma 1 is a protein that in humans is encoded by the ''EIF4G1'' gene. Function The protein encoded by this gene is a component of the protein complex eIF4F, which is involved in the recognition of the ...
has been the focus of extensive studies. (Other human paralogs are
EIF4G2 Eukaryotic translation initiation factor 4 gamma 2 (also called p97, NAT1, and DAP-5) is a protein that in humans is encoded by the ''EIF4G2'' gene. Function Translation initiation is mediated by specific recognition of the cap structure by euk ...
and
EIF4G3 Eukaryotic translation initiation factor 4 gamma 3 is a protein that in humans is encoded by the ''EIF4G3'' gene. The gene encodes a protein that functions in translation by aiding the assembly of the ribosome onto the messenger RNA template. Conf ...
.) Across species, eIF4G strongly associates with
eIF4E Eukaryotic translation initiation factor 4E, also known as eIF4E, is a protein that in humans is encoded by the ''EIF4E'' gene. Structure and function Most eukaryotic cellular mRNAs are blocked at their 5'-ends with the 7-methyl-guanosine fi ...
, the protein that directly binds the mRNA cap. Together with the
RNA helicase Helicases are a class of enzymes thought to be vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separati ...
protein
eIF4A The eukaryotic initiation factor-4A (eIF4A) family consists of 3 closely related proteins EIF4A1, EIF4A2, and EIF4A3. These factors are required for the binding of mRNA to 40S ribosomal subunits. In addition these proteins are helicases that ...
, these form the
eIF4F Eukaryotic initiation factor 4F (eIF4F) is a heterotrimeric protein complex that binds the 5' cap of messenger RNAs (mRNAs) to promote eukaryotic translation initiation. The eIF4F complex is composed of three non-identical subunits: the DEAD- ...
complex. Within the cell eIF4G is found primarily in the cytoplasm, usually bound to eIF4E; however, it is also found in the nucleus, where its function is unknown. It may have a role in
nonsense-mediated decay Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that exists in all eukaryotes. Its main function is to reduce errors in gene expression by eliminating mRNA transcripts that contain premature stop codons. Translation of these aberrant ...
.


History

eIF4G stands for eukaryotic initiation factor 4 gamma (typically gamma is now replaced by G in the literature). It was initially isolated by
fractionation Fractionation is a separation process in which a certain quantity of a mixture (of gases, solids, liquids, enzymes, or isotopes, or a suspension) is divided during a phase transition, into a number of smaller quantities (fractions) in which the ...
, found present in fraction 4 gamma, and was involved in eukaryotic translation initiation.


Binding partners

eIF4G has been found to associate with many other proteins besides those of the
eIF4F Eukaryotic initiation factor 4F (eIF4F) is a heterotrimeric protein complex that binds the 5' cap of messenger RNAs (mRNAs) to promote eukaryotic translation initiation. The eIF4F complex is composed of three non-identical subunits: the DEAD- ...
complex, including MNK-1, CBP80, CBP20, PABP, and
eIF3 Eukaryotic initiation factor 3 (eIF3) is a multiprotein complex that functions during the initiation phase of eukaryotic translation. It is essential for most forms of Eukaryotic translation#Cap-dependent initiation, cap-dependent and Eukaryotic t ...
. eIF4G also directly binds mRNA and has multiple positively charged regions for this function. Several IRESs also bind eIF4G directly, as do BTE CITEs.


In translation initiation

eIF4G is an important scaffold for the eIF4F complex and aids in recruiting the 40S ribosomal subunit to mRNA. There are three mechanisms that the 40S ribosome can come to recognize the start codon: scanning, internal entry, and shunting. In scanning, the 40S ribosome slides along the RNA until it recognizes a start site (typically an AUG sequence in "good context"). In internal entry, the 40S ribosome does not start from the beginning (5' end) of the mRNA but instead starts from somewhere in the middle. In shunting, after the 40S ribosome starts sliding along the mRNA it "jumps" or skips large sections; the mechanism for this is still unclear. eIF4G is required for most types of initiation, except in special cases such as internal initiation at the
HCV IRES The Hepatitis C virus internal ribosome entry site, or HCV IRES, is an RNA structure within the 5'UTR of the HCV genome that mediates cap-independent translation initiation. Protein translation of most eukaryotic mRNAs occurs by a cap-dependen ...
or Cripavirus IRES. eIF4G is an
initiation factor Initiation factors are proteins that bind to the small subunit of the ribosome during the initiation of translation, a part of protein biosynthesis. Initiation factors can interact with repressors to slow down or prevent translation. They have t ...
involved in the assembly of the 43S and 48S translation initiation complex. This particular initiation factor binds to the
PABPI Polyadenylate-binding protein 1 is a protein that in humans is encoded by the ''PABPC1'' gene. The protein PABP1 binds mRNA and facilitates a variety of functions such as transport into and out of the nucleus, degradation, translation, and stabili ...
(PolyA binding protein I), which is in turn binds the
messenger RNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the p ...
's
poly(A) tail Polyadenylation is the addition of a poly(A) tail to an RNA transcript, typically a messenger RNA (mRNA). The poly(A) tail consists of multiple adenosine monophosphates; in other words, it is a stretch of RNA that has only adenine bases. In euk ...
and
eIF3 Eukaryotic initiation factor 3 (eIF3) is a multiprotein complex that functions during the initiation phase of eukaryotic translation. It is essential for most forms of Eukaryotic translation#Cap-dependent initiation, cap-dependent and Eukaryotic t ...
, which is bound to the incoming small ribosomal subunit (40S).


In disease

eIF4G has been implicated in breast cancer. It appears in increased levels in certain types of breast cancer and increases production of mRNAs that contain IRESs; these mRNAs produce hypoxia- and stress-related proteins that encourage blood vessel invasion (which is important for tumorigenesis).


Role in aging

Regulation of translation initiation by eIF4G is vital for protein synthesis in developing organisms, for example yeast and nematodes. Deletion of eIF4G is lethal in yeast. In the roundworm
C. elegans ''Caenorhabditis elegans'' () is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek ''caeno-'' (recent), ''rhabditis'' (r ...
, knockout of eIF4G leads to animals that cannot develop past the early larval stage (L2) of development. The critical role of eIF4G in development appears to be reversed in adulthood, when eIF4G dysregulation negatively impacts lifespan and increases susceptibility to certain aging-related diseases (see eIF4G in diseases above). Inhibiting eIF4G during adulthood in C. elegans drastically extends lifespan, comparable to the lifespan increase exhibited during dietary restriction. In addition, inhibiting eIF4G reduces overall protein translation, while preferentially translating mRNA of genes important for responding to stress and against those associated with growth and reproduction. Thus eIF4G appears to control differential mRNA translation during periods or growth and stress, which may ultimately lead to age-related decline.


Importance in virology

As previously mentioned, eIF4G is bound by certain IRESs, which were initially discovered in viruses. Some viral IRESs directly bind eIF4G and co-opt it to gain access to the ribosome. Some cellular mRNAs also contain IRESs (including eIF4G itself). Some viral proteases cleave off part of eIF4G, that contains the eIF4E binding region. This has the effect of preventing most cellular mRNAs from binding eIF4G; however, a few cellular mRNAs with IRESs still translate under these conditions. One example of an eIF4G binding site in a viral IRES is in the EMCV IRES (nucleotides 746–949).


See also

*
Eukaryotic initiation factor Eukaryotic initiation factors (eIFs) are Protein, proteins or Protein complex, protein complexes involved in the initiation phase of eukaryotic translation. These proteins help stabilize the formation of ribosomal preinitiation complexes around the ...
s * Eukaryotic initiation factor 4F (eIF4F)


References

{{DEFAULTSORT:Eif4g Eukaryote proteins