Distance Measuring Equipment
   HOME

TheInfoList



OR:

In
aviation Aviation includes the activities surrounding mechanical flight and the aircraft industry. ''Aircraft'' includes fixed-wing and rotary-wing types, morphable wings, wing-less lifting bodies, as well as lighter-than-air craft such as hot a ...
, distance measuring equipment (DME) is a
radio navigation Radio navigation or radionavigation is the application of radio frequencies to determine a position of an object on the Earth, either the vessel or an obstruction. Like radiolocation, it is a type of radiodetermination. The basic principles a ...
technology that measures the
slant range In radio electronics, especially radar terminology, slant range or slant distance is the distance along the relative direction between two points. If the two points are at the same level (relative to a specific datum), the slant distance equals t ...
(distance) between an aircraft and a ground station by timing the
propagation delay Propagation delay is the time duration taken for a signal to reach its destination. It can relate to networking, electronics or physics. ''Hold time'' is the minimum interval required for the logic level to remain on the input after triggering ed ...
of radio signals in the frequency band between 960 and 1215 megahertz (MHz). Line-of-visibility between the aircraft and ground station is required. An interrogator (airborne) initiates an exchange by transmitting a pulse pair, on an assigned 'channel', to the transponder ground station. The channel assignment specifies the carrier frequency and the spacing between the pulses. After a known delay, the transponder replies by transmitting a pulse pair on a frequency that is offset from the interrogation frequency by 63 MHz and having specified separation.''Annex 10 to the Convention on International Civil Aviation, Volume I – Radio Navigation Aids''; International Civil Aviation Organization; International Standards and Recommended Practices. DME systems are used worldwide, using standards set by the International Civil Aviation Organization (ICAO), RTCA, the European Union Aviation Safety Agency (EASA) and other bodies. Some countries require that aircraft operating under
instrument flight rules In aviation, instrument flight rules (IFR) is one of two sets of regulations governing all aspects of civil aviation aircraft operations; the other is visual flight rules (VFR). The U.S. Federal Aviation Administration's (FAA) ''Instrument Fly ...
(IFR) be equipped with a DME interrogator; in others, a DME interrogator is only required for conducting certain operations. While stand-alone DME transponders are permitted, DME transponders are usually paired with an azimuth guidance system to provide aircraft with a two-dimensional navigation capability. A common combination is a DME colocated with a
VHF omnidirectional range Very high frequency omnirange station (VOR) is a type of short-range radio navigation system for aircraft, enabling aircraft with a receiving unit to determine its position and stay on course by receiving radio signals transmitted by a network ...
(VOR) transmitter in a single ground station. When this occurs, the frequencies of the VOR and DME equipment are paired. Such a configuration enables an aircraft to determine its azimuth angle and distance from the station. A
VORTAC Very high frequency omnirange station (VOR) is a type of short-range radio navigation system for aircraft, enabling aircraft with a receiving unit to determine its position and stay on course by receiving radio signals transmitted by a network ...
(a VOR co-located with a
TACAN A tactical air navigation system, commonly referred to by the acronym TACAN, is a navigation system used by military aircraft. It provides the user with bearing and distance (slant-range or hypotenuse) to a ground or ship-borne station. It is a mor ...
) installation provides the same capabilities to civil aircraft but also provides 2-D navigation capabilities to military aircraft. Low-power DME transponders are also associated with some
instrument landing system In aviation, the instrument landing system (ILS) is a precision radio navigation system that provides short-range guidance to aircraft to allow them to approach a runway at night or in bad weather. In its original form, it allows an aircraft to ...
(ILS), ILS localizer and
microwave landing system The microwave landing system (MLS) is an all-weather, precision radio guidance system intended to be installed at large airports to assist aircraft in landing, including 'blind landings'. MLS enables an approaching aircraft to determine when it ...
(MLS) installations. In those situations, the DME transponder frequency/pulse spacing is also paired with the ILS, LOC or MLS frequency. ICAO characterizes DME transmissions as ultra high frequency (UHF). The term L-band is also used. Developed in Australia, DME was invented by James "Gerry" Gerrand under the supervision of Edward George "Taffy" Bowen while employed as Chief of the Division of Radiophysics of the
Commonwealth Scientific and Industrial Research Organisation The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is an Australian Government agency responsible for scientific research. CSIRO works with leading organisations around the world. From its headquarters in Canberra, CSIRO ...
(CSIRO). Another engineered version of the system was deployed by
Amalgamated Wireless Australasia Limited AWA Technology Services, name based on former name Amalgamated Wireless (Australasia) Ltd, is an Australian provider for technology related services. Throughout most of the 20th century AWA was Australia's largest and most prominent electronics o ...
in the early 1950s operating in the 200 MHz VHF band. This Australian domestic version was referred to by the Federal Department of Civil Aviation as DME(D) (or DME Domestic), and the later international version adopted by ICAO as DME(I). DME is similar in principle to
secondary radar Secondary surveillance radar (SSR)''Secondary Surveillance Radar'', Stevens M.C. Artech House, is a radar system used in air traffic control (ATC), that unlike primary radar systems that measure the bearing and distance of targets using the d ...
ranging function, except the roles of the equipment in the aircraft and on the ground are reversed. DME was a post-war development based on the identification friend or foe (IFF) systems of
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the vast majority of the world's countries—including all of the great powers—forming two opposing ...
. To maintain compatibility, DME is functionally identical to the distance measuring component of TACAN.


Operation

In its first iteration, a DME-equipped airplane used the equipment to determine and display its distance from a land-based transponder by sending and receiving pulse pairs. The ground stations are typically collocated with VORs or VORTACs. A low-power DME can be collocated with an ILS or MLS where it provides an accurate distance to touchdown, similar to that otherwise provided by ILS
marker beacon A marker beacon is a particular type of VHF radio beacon used in aviation, usually in conjunction with an instrument landing system (ILS), to give pilots a means to determine position along an established route to a destination such as a runway. ...
s (and, in many instances, permitting removal of the latter). A newer role for DMEs is DME/DME area navigation (RNAV). Owing to the generally superior accuracy of DME relative to VOR, navigation using two DMEs (using trilateration/distance) permits operations that navigating with VOR/DME (using azimuth/distance) does not. However, it requires that the aircraft have RNAV capabilities, and some operations also require an inertial reference unit. A typical DME ground transponder for en-route or terminal navigation will have a 1 kW peak pulse output on the assigned UHF channel.


Hardware

The DME system comprises a UHF (L-band) transmitter/receiver (interrogator) in the aircraft and a UHF (L-band) receiver/transmitter (
transponder In telecommunications, a transponder is a device that, upon receiving a signal, emits a different signal in response. The term is a blend of ''transmitter'' and ''responder''. In air navigation or radio frequency identification, a flight trans ...
) on the ground.


Timing


Search mode

150 interrogation pulse-pairs per second. The aircraft interrogates the ground transponder with a series of pulse-pairs (interrogations) and, after a precise time delay (typically 50 microseconds), the ground station replies with an identical sequence of pulse-pairs. The DME receiver in the aircraft searches for reply pulse-pairs (X-mode = 12-microsecond spacing) with the correct interval and reply pattern to its original interrogation pattern. (Pulse-pairs that are not coincident with the individual aircraft's interrogation pattern e.g. not synchronous, are referred to as filler pulse-pairs, or
squitter Squitter refers to random pulses, pulse-pairs and other non-solicited messages used in various aviation radio systems' signal maintenance. Squitter pulses were originally, and are still, used in the DME/TACAN air navigation systems. Squitter puls ...
. Also, replies to other aircraft that are therefore non-synchronous also appear as squitter).


Track mode

Less than 30 interrogation Pulse-pairs per second, as the average number of pulses in SEARCH and TRACK is limited to max 30 pulse pairs per second. The aircraft interrogator locks on to the DME ground station once it recognizes a particular reply pulse sequence has the same spacing as the original interrogation sequence. Once the receiver is locked on, it has a narrower window in which to look for the echoes and can retain lock.


Distance calculation

A radio signal takes approximately 12.36 microseconds to travel to the target and back. The time difference between interrogation and reply, minus the 50 microsecond ground transponder delay and the pulse width of the reply pulses (12 microseconds in X mode and 30 microseconds in Y mode), is measured by the interrogator's timing circuitry and converted to a distance measurement (
slant range In radio electronics, especially radar terminology, slant range or slant distance is the distance along the relative direction between two points. If the two points are at the same level (relative to a specific datum), the slant distance equals t ...
), in nautical miles, then displayed on the cockpit DME display. The distance formula, ''distance = rate * time'', is used by the DME receiver to calculate its distance from the DME ground station. The rate in the calculation is the velocity of the radio pulse, which is the speed of light (roughly ). The time in the calculation is ''(total time – reply delay)/2''.


Accuracy

The accuracy of DME ground stations is 185 m (±0.1 nmi). It's important to understand that DME provides the physical distance between the aircraft antenna and the DME transponder antenna. This distance is often referred to as 'slant range' and depends trigonometrically upon the aircraft altitude above the transponder as well as the ground distance between them. For example, an aircraft directly above the DME station at 6,076 ft (1 nmi) altitude would still show on the DME readout. The aircraft is technically a mile away, just a mile straight up. Slant range error is most pronounced at high altitudes when close to the DME station. Radio-navigation aids must keep a certain degree of accuracy, given by international standards, FAA,
EASA The European Union Aviation Safety Agency (EASA) is an agency of the European Union (EU) with responsibility for civil aviation safety. It carries out certification, regulation and standardisation and also performs investigation and monitori ...
, ICAO, etc. To assure this is the case,
flight inspection Flight inspection refers to the periodic evaluation of navigational aids used in aviation, such as flight procedures and electronic signals, to ensure they are safe and accurate. Unlike flight tests, which analyze the aerodynamic design and safety ...
organizations check periodically critical parameters with properly equipped aircraft to calibrate and certify DME precision. ICAO recommends accuracy of less than the sum of 0.25 nmi plus 1.25% of the distance measured.


Specification

A typical DME ground-based responder beacon has a limit of 2700 interrogations per second (pulse pairs per second – pps). Thus it can provide distance information for up to 100 aircraft at a time—95% of transmissions for aircraft in tracking mode (typically 25 pps) and 5% in search mode (typically 150 pps). Above this limit the transponder avoids overload by limiting the sensitivity (gain) of the receiver. Replies to weaker (normally the more distant) interrogations are ignored to lower the transponder load.


Radio frequency and modulation data

DME frequencies are paired to VOR frequencies and a DME interrogator is designed to automatically tune to the corresponding DME frequency when the associated VOR frequency is selected. An airplane's DME interrogator uses frequencies from 1025 to 1150 MHz. DME transponders transmit on a channel in the 962 to 1213 MHz range and receive on a corresponding channel between 1025 and 1150 MHz. The band is divided into 126
channels Channel, channels, channeling, etc., may refer to: Geography * Channel (geography), in physical geography, a landform consisting of the outline (banks) of the path of a narrow body of water. Australia * Channel Country, region of outback Austral ...
for interrogation and 126 channels for reply. The interrogation and reply frequencies always differ by 63 MHz. The spacing of all channels is 1 MHz with a signal spectrum width of 100 kHz. Technical references to X and Y channels relate only to the spacing of the individual pulses in the DME pulse pair, 12 microsecond spacing for X channels and 30 microsecond spacing for Y channels. DME facilities identify themselves with a 1,350 Hz Morse code three letter identity. If collocated with a VOR or ILS, it will have the same identity code as the parent facility. Additionally, the DME will identify itself between those of the parent facility. The DME identity is 1,350 Hz to differentiate itself from the 1,020 Hz tone of the VOR or the ILS localizer.


DME transponder types

The U.S. FAA has installed three DME transponder types (not including those associated with a landing system): Terminal transponders (often installed at an airport) typically provide service to a minimum height above ground of and range of ; Low altitude transponders typically provide service to a minimum height of and range of ; and High altitude transponders, which typically provide service to a minimum height of and range of . However, many have operational restrictions largely based on line-of-sight blockage, and actual performance may be different. The U.S. Aeronautical Information Manual states, presumably referring to high altitude DME transponders: "reliable signals may be received at distances up to at line−of−sight altitude". DME transponders associated with an ILS or other instrument approach are intended for use during an approach to a particular runway, either one or both ends. They are not authorized for general navigation; neither a minimum range nor height is specified.


Frequency usage/channelization

DME frequency usage, channelization and pairing with other navaids (VOR, ILS, etc.) are defined by ICAO. 252 DME ''channels'' are defined by the combination of their interrogation frequency, interrogation pulse spacing, reply frequency, and reply pulse spacing. These channels are labeled 1X, 1Y, 2X, 2Y, ... 126X, 126Y. X channels (which came first) have both interrogation and reply pulse pairs spaced by 12 microseconds. Y channels (which were added to increase capacity) have interrogation pulse pairs spaced by 36 microseconds and reply pulse pairs spaced by 30 microseconds. A total of 252 frequencies are defined (but not all used) for DME interrogations and replies—specifically, 962, 963, ... 1213 megahertz. Interrogation frequencies are 1025, 1026, ... 1150 megahertz (126 total), and are the same for X and Y channels. For a given channel, the reply frequency is 63 megahertz below or above the interrogation frequency. The reply frequency is different for X and Y channels, and different for channels numbered 1-63 and 64-126. Not all defined channels/frequencies are assigned. There are assignment 'holes' centered on 1030 and 1090 megahertz to provide protection for the secondary surveillance radar (SSR) system. In many countries, there is also an assignment 'hole' centered on 1176.45 megahertz to protect the GPS L5 frequency. These three 'holes' remove approximately 60 megahertz from the frequencies available for use. Precision DME (DME/P), a component of the Microwave Landing System, is assigned to Z channels, which have a third set of interrogation and reply pulse spacings. The Z channels are multiplexed with the Y channels and do not materially affect the channel plan.


Future

In 2020 one company presented its 'Fifth-Generation DME'. Although compatible with existing equipment, this iteration provides greater accuracy (down to 5 meters using DME/DME triangulation), with a further reduction to 3 meters using a further refinement. The 3-meter equipment is being considered as part of Europe's SESAR project, with possible deployment by 2023. In the twenty-first century, aerial navigation has become increasingly reliant on satellite guidance. However, ground-based navigation will continue, for three reasons: * The satellite signal is extremely weak, can be spoofed, and is not always available; * A
European Union The European Union (EU) is a supranational political and economic union of member states that are located primarily in Europe. The union has a total area of and an estimated total population of about 447million. The EU has often been de ...
rule requires member states to keep and maintain ground-based navigation aids; * A feeling of sovereignty, or control over a state's own navigational means. "Some states want navigation over their territory to rely on means they control. And not every country has its constellation like the U.S.' GPS or Europe's Galileo." One advantage of the fifth-generation equipment proposed in 2020 is its ability to be function-checked by drone flights, which will significantly reduce the expense and delays of previous manned certification flight tests.Thales Introduces Fifth-Generation DME
( AW&ST, 11 March 2020)


See also

*
Automatic dependent surveillance – broadcast Automatic may refer to: Music Bands * Automatic (band), Australian rock band * Automatic (American band), American rock band * The Automatic, a Welsh alternative rock band Albums * ''Automatic'' (Jack Bruce album), a 1983 electronic rock ...
(ADS-B) *
Gee-H (navigation) Gee-H, sometimes written G-H or GEE-H, was a radio navigation system developed by Britain during World War II to aid RAF Bomber Command. The name refers to the system's use of the earlier Gee equipment, as well as its use of the "H principle" or ...
*
Instrument flight rules In aviation, instrument flight rules (IFR) is one of two sets of regulations governing all aspects of civil aviation aircraft operations; the other is visual flight rules (VFR). The U.S. Federal Aviation Administration's (FAA) ''Instrument Fly ...
(IFR) *
Non-directional beacon A non-directional beacon (NDB) or non-directional radio beacon is a radio beacon which does not include directional information. Radio beacons are radio transmitters at a known location, used as an aviation or marine navigational aid. NDB are i ...
(NDB) *
Squitter Squitter refers to random pulses, pulse-pairs and other non-solicited messages used in various aviation radio systems' signal maintenance. Squitter pulses were originally, and are still, used in the DME/TACAN air navigation systems. Squitter puls ...
* Transponder landing system (TLS)


References


External links


DME Basics

UK Navaids Gallery with detailed Technical Descriptions of their operation

Flash based instrument simulator with DME

U.S. National Aviation Handbook for the VOR/DME/TACAN Systems

A free online VOR and ADF simulator with DME
{{Authority control Navigational aids Aircraft instruments Length, distance, or range measuring devices Radio navigation