HOME

TheInfoList



OR:

Organogenesis is the phase of embryonic development that starts at the end of gastrulation and continues until
birth Birth is the act or process of bearing or bringing forth offspring, also referred to in technical contexts as parturition. In mammals, the process is initiated by hormones which cause the muscular walls of the uterus to contract, expelling the f ...
. During organogenesis, the three germ layers formed from gastrulation (the ectoderm, endoderm, and mesoderm) form the
internal organ In biology, an organ is a collection of tissues joined in a structural unit to serve a common function. In the hierarchy of life, an organ lies between tissue and an organ system. Tissues are formed from same type cells to act together in a f ...
s of the organism. The cells of each of the three germ layers undergo differentiation, a process where less-specialized cells become more-specialized through the expression of a specific set of genes. Cell differentiation is driven by cell signaling cascades. Differentiation is influenced by extracellular signals such as growth factors that are exchanged to adjacent cells which is called juxtracrine signaling or to neighboring cells over short distances which is called
paracrine signaling Paracrine signaling is a form of cell signaling, a type of cellular communication in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over ...
. Intracellular signals consist of a cell signaling itself (
autocrine signaling Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on that same cell, leading to changes in the cell. This can be contrasted with pa ...
), also play a role in organ formation. These signaling pathways allow for cell rearrangement and ensure that organs form at specific sites within the organism. The organogenesis process can be studied using embryos and organoids.


Organs produced by the germ layers

The endoderm is the inner most germ layer of the embryo which gives rise to gastrointestinal and respiratory organs by forming epithelial linings and organs such as the liver, lungs, and pancreas. The mesoderm or middle germ layer of the embryo will form the blood, heart, kidney, muscles, and connective tissues. The ectoderm or outermost germ layer of the developing embryo forms epidermis, the brain, and the nervous system.


Mechanism of organ formation

While each germ layer forms specific organs, in the 1820s, embryologist
Heinz Christian Pander Heinz Christian Pander, also Christian Heinrich Pander ( – ), was a Russian Empire ethnic Baltic German biologist and embryologist. Biography In 1817 he received his doctorate from the University of Würzburg, and spent several years (1827†...
discovered that the germ layers cannot form their respective organs without the cellular interactions from other tissues. In humans, internal organs begin to develop within 3–8 weeks after fertilization. The germ layers form organs by three processes: folds, splits, and condensation. Folds form in the germinal sheet of cells and usually form an enclosed tube which you can see in the development of vertebrates neural tube. Splits or pockets may form in the germinal sheet of cells forming vesicles or elongations. The lungs and glands of the organism may develop this way. A primary step in organogenesis for chordates is the development of the notochord, which induces the formation of the
neural plate The neural plate is a key developmental structure that serves as the basis for the nervous system. Cranial to the primitive node of the embryonic primitive streak, ectodermal tissue thickens and flattens to become the neural plate. The region ant ...
, and ultimately the
neural tube In the developing chordate (including vertebrates), the neural tube is the embryonic precursor to the central nervous system, which is made up of the brain and spinal cord. The neural groove gradually deepens as the neural fold become elevated, ...
in vertebrate development. The development of the neural tube will give rise to the brain and spinal cord. Vertebrates develop a
neural crest Neural crest cells are a temporary group of cells unique to vertebrates that arise from the embryonic ectoderm germ layer, and in turn give rise to a diverse cell lineage—including melanocytes, craniofacial cartilage and bone, smooth muscle, per ...
that differentiates into many structures, including bones, muscles, and components of the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all p ...
. Differentiation of the ectoderm into the neural crest, neural tube, and surface ectoderm is sometimes referred to as neurulation and the embryo in this phase is the neurula. The coelom of the body forms from a split of the mesoderm along the somite axis


Plant organogenesis

In plants, organogenesis occurs continuously and only stops when the plant dies. In the
shoot In botany, a plant shoot consists of any plant stem together with its appendages, leaves and lateral buds, flowering stems, and flower buds. The new growth from seed germination that grows upward is a shoot where leaves will develop. In the sp ...
, the
shoot apical meristem The meristem is a type of tissue found in plants. It consists of undifferentiated cells (meristematic cells) capable of cell division. Cells in the meristem can develop into all the other tissues and organs that occur in plants. These cells conti ...
s regularly produce new lateral organs ( leaves or
flower A flower, sometimes known as a bloom or blossom, is the reproductive structure found in flowering plants (plants of the division Angiospermae). The biological function of a flower is to facilitate reproduction, usually by providing a mechani ...
s) and lateral branches. In the
root In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the su ...
, new
lateral root Lateral roots, emerging from the pericycle (meristematic tissue), extend horizontally from the primary root (radicle) and over time makeup the iconic branching pattern of root systems. They contribute to anchoring the plant securely into the soil ...
s form from weakly differentiated internal tissue (e.g. the
xylem Xylem is one of the two types of transport tissue in vascular plants, the other being phloem. The basic function of xylem is to transport water from roots to stems and leaves, but it also transports nutrients. The word ''xylem'' is derived from ...
-pole
pericycle The pericycle is a cylinder of parenchyma or sclerenchyma cells that lies just inside the endodermis and is the outer most part of the stele of plants. Although it is composed of non-vascular parenchyma cells, it's still considered part of the va ...
in the model plant '' Arabidopsis thaliana''). ''In vitro'' and in response to specific cocktails of hormones (mainly auxins and
cytokinin Cytokinins (CK) are a class of plant hormones that promote cell division, or cytokinesis, in plant roots and shoots. They are involved primarily in cell growth and differentiation, but also affect apical dominance, axillary bud growth, and le ...
s), most plant tissues can de-differentiate and form a mass of dividing
totipotent Pluripotency: These are the cells that can generate into any of the three Germ layers which imply Endodermal, Mesodermal, and Ectodermal cells except tissues like the placenta. According to Latin terms, Pluripotentia means the ability for many thin ...
stem cells called a
callus A callus is an area of thickened and sometimes hardened skin that forms as a response to repeated friction, pressure, or other irritation. Since repeated contact is required, calluses are most often found on the feet and hands, but they may o ...
. Organogenesis can then occur from those cells. The type of organ that is formed depends on the relative concentrations of the hormones in the medium. Plant organogenesis can be induced in tissue culture and used to regenerate plants.


See also

*
Organoid An organoid is a miniaturized and simplified version of an organ produced in vitro in three dimensions that shows realistic micro-anatomy. They are derived from one or a few cells from a tissue, embryonic stem cells or induced pluripotent stem ...
* Ectoderm * Embryogenesis * Endoderm *
Eye development Eye formation in the human embryo begins at approximately three weeks into embryonic development and continues through the tenth week.Ort, D., David, H."Development of the Eye" Retrieved 22 April 2015. Cells from both the mesodermal and the ect ...
* Gastrulation * Germ layer * Germ line development * Gonadogenesis *
Heart development Heart development, also known as cardiogenesis, refers to the prenatal development of the heart. This begins with the formation of two endocardial tubes which merge to form the tubular heart, also called the primitive heart tube. The heart is t ...
* Histogenesis *
Limb development Limb development in vertebrates is an area of active research in both developmental and evolutionary biology, with much of the latter work focused on the transition from fin to limb. Limb formation begins in the morphogenetic limb field, as mes ...
* Mesoderm *
Morphogenesis Morphogenesis (from the Greek ''morphê'' shape and ''genesis'' creation, literally "the generation of form") is the biological process that causes a cell, tissue or organism to develop its shape. It is one of three fundamental aspects of deve ...
*
Noogenesis The noosphere (alternate spelling noösphere) is a philosophical concept developed and popularized by the Russian-Ukrainian Soviet biogeochemist Vladimir Vernadsky, and the French philosopher and Jesuit priest Pierre Teilhard de Chardin. Vernad ...
* List of human cell types derived from the germ layers


References


External links

* {{Embryology Developmental biology Embryology