DNA-functionalization of
quantum dot
Quantum dots (QDs) are semiconductor particles a few nanometres in size, having light, optical and electronics, electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanote ...
s is the attachment of strands of
DNA to the surface of a quantum dot. Although quantum dots with
cadmium (Cd) have some
cytotoxic
Cytotoxicity is the quality of being toxic to cells. Examples of toxic agents are an immune cell or some types of venom, e.g. from the puff adder (''Bitis arietans'') or brown recluse spider (''Loxosceles reclusa'').
Cell physiology
Treating cells ...
release, researchers have functionalized quantum dots for biocompatibility and bound them to DNA in order to combine the advantages of both materials. Quantum dots are commonly used for imaging biological systems ''
in vitro
''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in biology an ...
'' and ''
in vivo
Studies that are ''in vivo'' (Latin for "within the living"; often not italicized in English) are those in which the effects of various biological entities are tested on whole, living organisms or cells, usually animals, including humans, and ...
'' in animal studies due to their excellent optical properties when excited by light, while DNA has numerous bioengineering applications, including: genetic engineering, self-assembling nanostructures, protein binding, and
biomarkers
In biomedical contexts, a biomarker, or biological marker, is a measurable indicator of some biological state or condition. Biomarkers are often measured and evaluated using blood, urine, or soft tissues to examine normal biological processes, p ...
. The ability to visualize the chemical and biological processes of DNA allows feedback to optimize and learn about these small scale behaviors.
Background
Quantum dots are
inorganic
In chemistry, an inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds, that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as '' inorganic chemist ...
nanocrystal
A ''nanocrystal'' is a material particle having at least one dimension smaller than 100 nanometres, based on quantum dots
(a nanoparticle) and composed of atoms in either a single- or poly-crystalline arrangement.
The size of nanocrystals dist ...
semiconductor
A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
s that behave exceptionally well as
fluorophore
A fluorophore (or fluorochrome, similarly to a chromophore) is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with se ...
s. In the field of
biology
Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary i ...
, fluorophores are one of the few tools that allow us to peer inside of a live biological system at a
cellular
Cellular may refer to:
*Cellular automaton, a model in discrete mathematics
* Cell biology, the evaluation of cells work and more
* ''Cellular'' (film), a 2004 movie
*Cellular frequencies, assigned to networks operating in cellular RF bands
*Cell ...
level. As a fluorophore, the size of a quantum dot directly reflects the
wavelength
In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats.
It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
of light emitted, allowing for a highly tunable
color spectrum
The visible spectrum is the portion of the electromagnetic spectrum that is visual perception, visible to the human eye. Electromagnetic radiation in this range of wavelengths is called ''visible light'' or simply light. A typical human eye wil ...
. Since the size of quantum dots are controllable and an increased size produces an increased wavelength range of emission, researchers are able to paint pictures on the cellular and sub-cellular levels with this technology. The current problem with common CdSe-ZnS quantum dots is that Cd is toxic to cells.
To prevent this problem researches are developing ways to modify the quantum dot surfaces for
biocompatibility
Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoing de ...
, in addition to the development of Cd-free quantum dots (“CFQDs”). After a
surface modification
Surface modification is the act of modifying the surface of a material by bringing physical, chemical or biological characteristics different from the ones originally found on the surface of a material.
This modification is usually made to solid m ...
has been made to limit
toxicity
Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subst ...
, the particle can be further coated with a
hydrogel
A hydrogel is a crosslinked hydrophilic polymer that does not dissolve in water. They are highly absorbent yet maintain well defined structures. These properties underpin several applications, especially in the biomedical area. Many hydrogels ar ...
or
bioconjugate
Bioconjugation is a chemical strategy to form a stable Covalent bond, covalent link between two molecules, at least one of which is a biomolecule.
Function
Recent advances in the understanding of biomolecules enabled their application to numero ...
layer to selectively bind to DNA, which may then be used for cellular or
molecular
A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
level detection.
[
]
Surface Modification Methods
Hydrogel encapsulation of quantum dots
In order to coat the toxic cadmium ions of the CdSe core, hydrogel layers may be used to coat quantum dots for biocompatibility. The purpose of the outer ZnS shell in this case is to interact with dangling bond
In chemistry, a dangling bond is an unsatisfied valence on an immobilized atom. An atom with a dangling bond is also referred to as an immobilized free radical or an immobilized radical, a reference to its structural and chemical similarity to a f ...
s, in addition to maintaining the fluorescent strength of a functional quantum dot fluorophore. Within a hydrogel encapsulation, the ZnSe shell surface may be charged to bind to the hydrophobic interior of a micelle, which then allows the hydrophilic exterior to remain in contact with an aqueous solution
An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would be re ...
(i.e. the human body and most other biological systems). The hydrogel layer works as a simplified intermediary bond for DNA or other organic materials
Organic matter, organic material, or natural organic matter refers to the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have c ...
.
Bioconjugation of Quantum Dots
Another surface modification type is bioconjugation
Bioconjugation is a chemical strategy to form a stable covalent link between two molecules, at least one of which is a biomolecule.
Function
Recent advances in the understanding of biomolecules enabled their application to numerous fields like ...
. This method uses two biomolecules which are covalently bonded to one another to form a protective shell around the quantum dot. Hydrophobic bioconjugation inhibits the breakdown of the quantum dot structure by sources within the body that may cause degradation. The bioconjugates can be further customized by attaching affinity ligands
In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electro ...
to the surface of the structure. These ligands
In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electro ...
allow the quantum dot to bind to various antigens and can be used to specifically target certain cells. This is the driving mechanism for tumor
A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
targeting.
Core-shell CdSe-ZnS quantum dots can be protected through bioconjugation, using a coordinating ligand and an amphiphilic polymer. One study used tri-n-octylphosphine oxide (TOPO) as a ligand, and a triblock polymer structure consisting of two hydrophobic segments, and one hydrophilic
A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press.
In contrast, hydrophobes are no ...
segment, all with hydrophobic
In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water.
Hydrophobic molecules tend to be nonpolar and, th ...
hydrocarbon
In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or ex ...
side chains. The strong hydrophobic interactions between the TOPO and polymer hydrocarbon allow the two layers to “bond” to one another, forming a hydrophobic protection structure. This structure resists degradation via hydrolysis
Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
and enzymes
Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different molecule ...
, which are common methods of degradation ''in vivo''. This bioconjugation layer protects quantum dot optical properties in a wide range of pH (1-14), salt conditions (0.01-1.0M), and even after 1.0M hydrochloric acid
Hydrochloric acid, also known as muriatic acid, is an aqueous solution of hydrogen chloride. It is a colorless solution with a distinctive pungent smell. It is classified as a strong acid
Acid strength is the tendency of an acid, symbol ...
treatment.
Carboxyl attachments
Carboxyl groups can be immobilized on the surface of a quantum dot coated in zinc oxide
Zinc oxide is an inorganic compound with the formula . It is a white powder that is insoluble in water. ZnO is used as an additive in numerous materials and products including cosmetics, food supplements, rubbers, plastics, ceramics, glass, cemen ...
. Single strands of DNA can then be modified with an added amino group in order to covalently bond to the carboxyl group, due to an amide bond formed between the carboxyl and amino groups in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). Factors that can influence the binding of single stranded DNA to the carboxyl group are pH and ionic strength. The pH determines how many protons
A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
are available to form covalent bonds, with less being present as the pH gets higher. This results in fewer strands of DNA binding to each quantum dot. Lower ionic strength results in more stable quantum dots, but also causes DNA strands to repel each other. Optimum coupling conditions for over 10 DNA strands per quantum dot are at a pH of 7 and an ionic strength of 0M. A neutral pH of 7 allows enough protons from the carboxyl group to facilitate covalent bonding of amino modified DNA, but not enough protons to destabilize the colloids
A colloid is a mixture in which one substance consisting of microscopically dispersed insoluble particles is suspended throughout another substance. Some definitions specify that the particles must be dispersed in a liquid, while others extend ...
.
Intermolecular Forces
The addition of DNA to the surface of a quantum dot changes the intermolecular forces that occur between un-conjugated quantum dots. Changing the intermolecular forces
An intermolecular force (IMF) (or secondary force) is the force that mediates interaction between molecules, including the electromagnetic forces of attraction
or repulsion which act between atoms and other types of neighbouring particles, e.g. a ...
between the quantum dots can alter many characteristics important for the use of quantum dots in aqueous conditions. As the surface of quantum dots are conjugated with DNA, the colloidal stability and solubility are affected.
Colloidal stability
Quantum dots conjugated with DNA are subject to electrostatic repulsion and Van der Waals forces which affect the colloidal stability of the quantum dot-DNA conjugates. Binding DNA to the surface of a quantum dot increases the stability of the quantum dots. The DNA chains provide more electrostatic repulsion than the surface of the quantum dots, which prevents them from aggregating and falling out of solution. The colloidal stability is estimated from the total interaction energy between two particles which calculated by the DLVO equation
Ves is the electrostatic
Electrostatics is a branch of physics that studies electric charges at rest (static electricity).
Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amber ...
repulsion forces between two identical spherical particles from the electric double layer of each particle. It is calculated with the equation[
]