HOME

TheInfoList



OR:

Carbon-14, C-14, or radiocarbon, is a
radioactive isotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
of carbon with an atomic nucleus containing 6
protons A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
and 8
neutrons The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave ...
. Its presence in organic materials is the basis of the
radiocarbon dating Radiocarbon dating (also referred to as carbon dating or carbon-14 dating) is a method for determining the age of an object containing organic material by using the properties of radiocarbon, a radioactive isotope of carbon. The method was dev ...
method pioneered by
Willard Libby Willard Frank Libby (December 17, 1908 – September 8, 1980) was an American physical chemist noted for his role in the 1949 development of radiocarbon dating, a process which revolutionized archaeology and palaeontology. For his contribution ...
and colleagues (1949) to date archaeological, geological and hydrogeological samples. Carbon-14 was discovered on February 27, 1940, by
Martin Kamen Martin David Kamen (August 27, 1913, Toronto – August 31, 2002, Montecito, California) was an American chemist who, together with Sam Ruben, co-discovered the synthesis of the isotope carbon-14 on February 27, 1940, at the University of Ca ...
and
Sam Ruben Samuel Ruben (born Charles Rubenstein; November 5, 1913 – September 28, 1943) was an American chemist who with Martin Kamen co-discovered the synthesis of the isotope carbon-14 in 1940. Early life Ruben was the son of Herschel and Frieda Pen ...
at the
University of California Radiation Laboratory Lawrence Berkeley National Laboratory (LBNL), commonly referred to as the Berkeley Lab, is a United States national laboratory that is owned by, and conducts scientific research on behalf of, the United States Department of Energy. Located in ...
in
Berkeley, California Berkeley ( ) is a city on the eastern shore of San Francisco Bay in northern Alameda County, California, United States. It is named after the 18th-century Irish bishop and philosopher George Berkeley. It borders the cities of Oakland and Emery ...
. Its existence had been suggested by Franz Kurie in 1934. There are three naturally occurring
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass numbers ...
s of carbon on Earth:
carbon-12 Carbon-12 (12C) is the most abundant of the two stable isotopes of carbon (carbon-13 being the other), amounting to 98.93% of element carbon on Earth; its abundance is due to the triple-alpha process by which it is created in stars. Carbon-12 i ...
(), which makes up 99% of all carbon on Earth;
carbon-13 Carbon-13 (13C) is a natural, stable isotope of carbon with a nucleus containing six protons and seven neutrons. As one of the environmental isotopes, it makes up about 1.1% of all natural carbon on Earth. Detection by mass spectrometry A mass ...
(), which makes up 1%; and carbon-14 (), which occurs in trace amounts, making up about 1 or 1.5 atoms per 1012 atoms of carbon in the atmosphere. Carbon-12 and carbon-13 are both stable, while carbon-14 is unstable and has a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
of 5,730 ± 40 years. Carbon-14 decays into
nitrogen-14 Natural nitrogen (7N) consists of two stable isotopes: the vast majority (99.6%) of naturally occurring nitrogen is nitrogen-14, with the remainder being nitrogen-15. Fourteen radioisotopes are also known, with atomic masses ranging from 10 to 25 ...
() through
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For e ...
. A gram of carbon containing 1 atom of carbon-14 per 1012 atoms will emit ~0.2 beta particles per second. The primary natural source of carbon-14 on Earth is cosmic ray action on nitrogen in the atmosphere, and it is therefore a
cosmogenic nuclide Cosmogenic nuclides (or cosmogenic isotopes) are rare nuclides (isotopes) created when a high-energy cosmic ray interacts with the nucleus of an ''in situ'' Solar System atom, causing nucleons (protons and neutrons) to be expelled from the atom ...
. However, open-air
nuclear test Nuclear weapons tests are experiments carried out to determine nuclear weapons' effectiveness, yield, and explosive capability. Testing nuclear weapons offers practical information about how the weapons function, how detonations are affected by ...
ing between 1955 and 1980 contributed to this pool. The different isotopes of carbon do not differ appreciably in their chemical properties. This resemblance is used in chemical and biological research, in a technique called
carbon label Carbon label is a form of isotopic labeling where a carbon-12 atom has been replaced with either a carbon-13 atom or a carbon-14 atom in a chemical compound so as to 'tag' (i.e. label) that position of the compound to assist in determining the way ...
ing: carbon-14 atoms can be used to replace nonradioactive carbon, in order to trace chemical and biochemical reactions involving carbon atoms from any given organic compound.


Radioactive decay and detection

Carbon-14 goes through radioactive
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For e ...
: : → + + + 156.5 keV By emitting an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kno ...
and an
electron antineutrino The electron neutrino () is an elementary particle which has zero electric charge and a spin of . Together with the electron, it forms the first generation of leptons, hence the name electron neutrino. It was first hypothesized by Wolfgang Pauli ...
, one of the neutrons in the carbon-14 atom decays to a proton and the carbon-14 (
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
of 5,730 ± 40 years) decays into the stable (non-radioactive) isotope
nitrogen-14 Natural nitrogen (7N) consists of two stable isotopes: the vast majority (99.6%) of naturally occurring nitrogen is nitrogen-14, with the remainder being nitrogen-15. Fourteen radioisotopes are also known, with atomic masses ranging from 10 to 25 ...
. As usual with beta decay, almost all the decay energy is carried away by the beta particle and the neutrino. The emitted beta particles have a maximum energy of about 156 keV, while their weighted mean energy is 49 keV. These are relatively low energies; the maximum distance traveled is estimated to be 22 cm in air and 0.27 mm in body tissue. The fraction of the radiation transmitted through the dead skin layer is estimated to be 0.11. Small amounts of carbon-14 are not easily detected by typical Geiger–Müller (G-M) detectors; it is estimated that G-M detectors will not normally detect contamination of less than about 100,000 disintegrations per minute (0.05 µCi).
Liquid scintillation counting Liquid scintillation counting is the measurement of radioactive activity of a sample material which uses the technique of mixing the active material with a liquid scintillator (e.g. zinc sulfide), and counting the resultant photon emissions. The pu ...
is the preferred method although more recently, accelerator mass spectrometry has become the method of choice; it counts all the carbon-14 atoms in the sample and not just the few that happen to decay during the measurements; it can therefore be used with much smaller samples (as small as individual plant seeds), and gives results much more quickly. The G-M counting efficiency is estimated to be 3%. The half-distance layer in water is 0.05 mm.


Radiocarbon dating

Radiocarbon dating is a
radiometric dating Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares ...
method that uses () to determine the age of carbonaceous materials up to about 60,000 years old. The technique was developed by
Willard Libby Willard Frank Libby (December 17, 1908 – September 8, 1980) was an American physical chemist noted for his role in the 1949 development of radiocarbon dating, a process which revolutionized archaeology and palaeontology. For his contribution ...
and his colleagues in 1949 during his tenure as a professor at the
University of Chicago The University of Chicago (UChicago, Chicago, U of C, or UChi) is a private research university in Chicago, Illinois. Its main campus is located in Chicago's Hyde Park neighborhood. The University of Chicago is consistently ranked among the be ...
. Libby estimated that the radioactivity of exchangeable carbon-14 would be about 14 disintegrations per minute (dpm) per gram of pure carbon, and this is still used as the activity of the ''modern radiocarbon standard''. In 1960, Libby was awarded the
Nobel Prize in chemistry ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then "M ...
for this work. One of the frequent uses of the technique is to date organic remains from archaeological sites. Plants fix atmospheric carbon during photosynthesis, so the level of in plants and animals when they die approximately equals the level of in the atmosphere at that time. However, it decreases thereafter from radioactive decay, allowing the date of death or fixation to be estimated. The initial level for the calculation can either be estimated, or else directly compared with known year-by-year data from tree-ring data (
dendrochronology Dendrochronology (or tree-ring dating) is the scientific method of dating tree rings (also called growth rings) to the exact year they were formed. As well as dating them, this can give data for dendroclimatology, the study of climate and atmos ...
) up to 10,000 years ago (using overlapping data from live and dead trees in a given area), or else from cave deposits (
speleothem A speleothem (; ) is a geological formation by mineral deposits that accumulate over time in natural caves. Speleothems most commonly form in calcareous caves due to carbonate dissolution reactions. They can take a variety of forms, depending ...
s), back to about 45,000 years before the present. A calculation or (more accurately) a direct comparison of carbon-14 levels in a sample, with tree ring or cave-deposit carbon-14 levels of a known age, then gives the wood or animal sample age-since-formation. Radiocarbon is also used to detect disturbance in natural ecosystems; for example, in
peatland A mire, peatland, or quagmire is a wetland area dominated by living peat-forming plants. Mires arise because of incomplete decomposition of organic matter, usually litter from vegetation, due to water-logging and subsequent anoxia. All types ...
landscapes, radiocarbon can indicate that carbon which was previously stored in organic soils is being released due to land clearance or climate change. Cosmogenic nuclides are also used as proxy data to characterize cosmic particle and solar activity of the distant past.


Origin


Natural production in the atmosphere

Carbon-14 is produced in the upper
troposphere The troposphere is the first and lowest layer of the atmosphere of the Earth, and contains 75% of the total mass of the planetary atmosphere, 99% of the total mass of water vapour and aerosols, and is where most weather phenomena occur. From t ...
and the
stratosphere The stratosphere () is the second layer of the atmosphere of the Earth, located above the troposphere and below the mesosphere. The stratosphere is an atmospheric layer composed of stratified temperature layers, with the warm layers of air h ...
by
thermal neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s absorbed by
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at sevent ...
atoms. When cosmic rays enter the atmosphere, they undergo various transformations, including the production of
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behav ...
s. The resulting neutrons (n) participate in the following n-p reaction (p is
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
): : + n → + p The highest rate of carbon-14 production takes place at altitudes of and at high
geomagnetic Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic f ...
latitudes. The rate of production can be modelled, yielding values of 16,400 or 18,800 atoms of per second per square meter of the Earth's surface, which agrees with the global
carbon budget A carbon budget is "the maximum amount of cumulative net global anthropogenic carbon dioxide () emissions that would result in limiting global warming to a given level with a given probability, taking into account the effect of other anthropogen ...
that can be used to backtrack, but attempts to measure the production time directly ''in situ'' were not very successful. Production rates vary because of changes to the cosmic ray flux caused by the heliospheric modulation (solar wind and solar magnetic field), and, of great significance, due to variations in the
Earth's magnetic field Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic ...
. Changes in the
carbon cycle The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the Earth. Carbon is the main component of biological compounds as well as a major componen ...
however can make such effects difficult to isolate and quantify. Occasional spikes may occur; for example, there is evidence for an unusually high production rate in AD 774–775, caused by an extreme solar energetic particle event, strongest for the last ten millennia. Another "extraordinarily large" increase (2%) has been associated with a 5480 BC event, which is unlikely to be a solar energetic particle event. Carbon-14 may also be produced by lightning but in amounts negligible, globally, compared to cosmic ray production. Local effects of cloud-ground discharge through sample residues are unclear, but possibly significant.


Other carbon-14 sources

Carbon-14 can also be produced by other neutron reactions, including in particular (n,γ) and (n,α) with
thermal neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s, and (n,d) and (n,) with
fast neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s. The most notable routes for production by thermal neutron irradiation of targets (e.g., in a nuclear reactor) are summarized in the table. Carbon-14 may also be
radiogenic A radiogenic nuclide is a nuclide that is produced by a process of radioactive decay. It may itself be radioactive (a radionuclide) or stable (a stable nuclide). Radiogenic nuclides (more commonly referred to as radiogenic isotopes) form some of ...
(
cluster decay Cluster decay, also named heavy particle radioactivity or heavy ion radioactivity, is a rare type of nuclear decay in which an atomic nucleus emits a small "cluster" of neutrons and protons, more than in an alpha particle, but less than a typic ...
of , , ). However, this origin is extremely rare.


Formation during nuclear tests

The above-ground
nuclear tests Nuclear weapons tests are experiments carried out to determine nuclear weapons' effectiveness, yield, and explosive capability. Testing nuclear weapons offers practical information about how the weapons function, how detonations are affected by ...
that occurred in several countries between 1955 and 1980 (see nuclear test list) dramatically increased the amount of carbon-14 in the atmosphere and subsequently in the biosphere; after the tests ended, the atmospheric concentration of the isotope began to decrease, as radioactive was fixed into plant and animal tissue, and dissolved in the oceans. One side-effect of the change in atmospheric carbon-14 is that this has enabled some options (e.g., bomb-pulse dating) for determining the birth year of an individual, in particular, the amount of carbon-14 in
tooth enamel Tooth enamel is one of the four major tissues that make up the tooth in humans and many other animals, including some species of fish. It makes up the normally visible part of the tooth, covering the crown. The other major tissues are dentin, ...
, or the carbon-14 concentration in the lens of the eye. In 2019,
Scientific American ''Scientific American'', informally abbreviated ''SciAm'' or sometimes ''SA'', is an American popular science magazine. Many famous scientists, including Albert Einstein and Nikola Tesla, have contributed articles to it. In print since 1845, it i ...
reported that carbon-14 from nuclear bomb testing has been found in the bodies of aquatic animals found in one of the most inaccessible regions of the earth, the
Mariana Trench The Mariana Trench is an oceanic trench located in the western Pacific Ocean, about east of the Mariana Islands; it is the deepest oceanic trench on Earth. It is crescent-shaped and measures about in length and in width. The maximum known ...
in the Pacific Ocean.


Emissions from nuclear power plants

Carbon-14 is produced in coolant at
boiling water reactor A boiling water reactor (BWR) is a type of light water nuclear reactor used for the generation of electrical power. It is a design different from a Soviet graphite-moderated RBMK. It is the second most common type of electricity-generating nuc ...
s (BWRs) and
pressurized water reactor A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants (with notable exceptions being the UK, Japan and Canada). In a PWR, the primary coolant (water) is ...
s (PWRs). It is typically released to the atmosphere in the form of carbon dioxide at BWRs, and
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on ...
at PWRs. Best practice for nuclear power plant operator management of carbon-14 includes releasing it at night, when plants are not
photosynthesizing Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
. Carbon-14 is also generated inside nuclear fuels (some due to transmutation of oxygen in the
uranium oxide Uranium oxide is an oxide of the element uranium. The metal uranium forms several oxides: * Uranium dioxide or uranium(IV) oxide (UO2, the mineral uraninite or pitchblende) * Diuranium pentoxide or uranium(V) oxide (U2O5) * Uranium trioxide or ...
, but most significantly from transmutation of nitrogen-14 impurities), and if the spent fuel is sent to
nuclear reprocessing Nuclear reprocessing is the chemical separation of fission products and actinides from spent nuclear fuel. Originally, reprocessing was used solely to extract plutonium for producing nuclear weapons. With commercialization of nuclear power, the ...
then the carbon-14 is released, for example as during
PUREX PUREX (plutonium uranium reduction extraction) is a chemical method used to purify fuel for nuclear reactors or nuclear weapons. PUREX is the ''de facto'' standard aqueous nuclear reprocessing method for the recovery of uranium and plutonium fr ...
.


Occurrence


Dispersion in the environment

After production in the upper atmosphere, the carbon-14 atoms react rapidly to form mostly (about 93%) (
carbon monoxide Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simpl ...
), which subsequently oxidizes at a slower rate to form , radioactive carbon dioxide. The gas mixes rapidly and becomes evenly distributed throughout the atmosphere (the mixing timescale in the order of weeks). Carbon dioxide also dissolves in water and thus permeates the
ocean The ocean (also the sea or the world ocean) is the body of salt water that covers approximately 70.8% of the surface of Earth and contains 97% of Earth's water. An ocean can also refer to any of the large bodies of water into which the wor ...
s, but at a slower rate. The atmospheric half-life for removal of has been estimated to be roughly 12 to 16 years in the northern hemisphere. The transfer between the ocean shallow layer and the large reservoir of
bicarbonate In inorganic chemistry, bicarbonate (IUPAC-recommended nomenclature: hydrogencarbonate) is an intermediate form in the deprotonation of carbonic acid. It is a polyatomic anion with the chemical formula . Bicarbonate serves a crucial biochemic ...
s in the ocean depths occurs at a limited rate. In 2009 the activity of was 238 Bq per kg carbon of fresh terrestrial biomatter, close to the values before atmospheric nuclear testing (226 Bq/kg C; 1950).


Total inventory

The inventory of carbon-14 in Earth's biosphere is about 300 megacuries (11  E Bq), of which most is in the oceans. The following inventory of carbon-14 has been given:Choppin, G.R.; Liljenzin, J.O. and Rydberg, J. (2002) "Radiochemistry and Nuclear Chemistry", 3rd edition, Butterworth-Heinemann, . * Global inventory: ~8500 PBq (about 50  t) ** Atmosphere: 140 PBq (840 kg) ** Terrestrial materials: the balance * From nuclear testing (until 1990): 220 PBq (1.3 t)


In fossil fuels

Many man-made chemicals are derived from
fossil fuel A fossil fuel is a hydrocarbon-containing material formed naturally in the Earth's crust from the remains of dead plants and animals that is extracted and burned as a fuel. The main fossil fuels are coal, oil, and natural gas. Fossil fuels ma ...
s (such as
petroleum Petroleum, also known as crude oil, or simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons, and is found in geological formations. The name ''petroleum'' covers both naturally occurring unprocessed crude ...
or
coal Coal is a combustible black or brownish-black sedimentary rock, formed as rock strata called coal seams. Coal is mostly carbon with variable amounts of other elements, chiefly hydrogen, sulfur, oxygen, and nitrogen. Coal is formed when dead ...
) in which is greatly depleted because the age of fossils far exceeds the half-life of . The relative absence of is therefore used to determine the relative contribution (or
mixing ratio In chemistry and physics, the dimensionless mixing ratio is the abundance of one component of a mixture relative to that of all other components. The term can refer either to mole ratio (see concentration) or mass ratio (see stoichiometry). In a ...
) of fossil fuel oxidation to the total carbon dioxide in a given region of the Earth's
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A s ...
. Dating a specific sample of fossilized carbonaceous material is more complicated. Such deposits often contain trace amounts of carbon-14. These amounts can vary significantly between samples, ranging up to 1% of the ratio found in living organisms, a concentration comparable to an apparent age of 40,000 years. This may indicate possible contamination by small amounts of bacteria, underground sources of radiation causing the (n,p) reaction, direct
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weakly ...
decay (although reported measured ratios of /U in uranium-bearing ores would imply roughly 1 uranium atom for every two carbon atoms in order to cause the / ratio, measured to be on the order of 10−15), or other unknown secondary sources of carbon-14 production. The presence of carbon-14 in the
isotopic signature An isotopic signature (also isotopic fingerprint) is a ratio of non-radiogenic 'stable isotopes', stable radiogenic isotopes, or unstable radioactive isotopes of particular elements in an investigated material. The ratios of isotopes in a sample m ...
of a sample of carbonaceous material possibly indicates its contamination by biogenic sources or the decay of radioactive material in surrounding geologic strata. In connection with building the
Borexino Borexino is a particle physics experiment to study low energy (sub-MeV) solar neutrinos. The detector is the world's most radio-pure liquid scintillator calorimeter. It is placed within a stainless steel sphere which holds the photomultiplier tu ...
solar neutrino observatory, petroleum feedstock (for synthesizing the primary scintillant) was obtained with low content. In the Borexino Counting Test Facility, a / ratio of 1.94×10−18 was determined; probable reactions responsible for varied levels of in different
petroleum reservoir A petroleum reservoir or oil and gas reservoir is a subsurface accumulation of hydrocarbons contained in porous or fractured rock formations. Such reservoirs form when kerogen (ancient plant matter) is created in surrounding rock by the presenc ...
s, and the lower levels in methane, have been discussed by Bonvicini et al.


In the human body

Since many sources of human food are ultimately derived from terrestrial plants, the relative concentration of carbon-14 in our bodies is nearly identical to the relative concentration in the atmosphere. The rates of disintegration of
potassium-40 Potassium-40 (40K) is a radioactive isotope of potassium which has a long half-life of 1.25 billion years. It makes up about 0.012% (120 ppm) of the total amount of potassium found in nature. Potassium-40 undergoes three types of radioactive de ...
and carbon-14 in the normal adult body are comparable (a few thousand disintegrated nuclei per second). The beta-decays from external (environmental) radiocarbon contribute approximately 0.01
mSv mSv or MSV may refer to: * Maize streak virus, a plant disease * Medium-speed vehicle, US category * Medium Systems Vehicle, a class of fictional artificially intelligent starship in The Culture universe of late Scottish author Iain Banks * Mil ...
/year (1 mrem/year) to each person's dose of ionizing radiation. This is small compared to the doses from
potassium-40 Potassium-40 (40K) is a radioactive isotope of potassium which has a long half-life of 1.25 billion years. It makes up about 0.012% (120 ppm) of the total amount of potassium found in nature. Potassium-40 undergoes three types of radioactive de ...
(0.39 mSv/year) and
radon Radon is a chemical element with the symbol Rn and atomic number 86. It is a radioactive, colourless, odourless, tasteless noble gas. It occurs naturally in minute quantities as an intermediate step in the normal radioactive decay chains through ...
(variable). Carbon-14 can be used as a
radioactive tracer A radioactive tracer, radiotracer, or radioactive label is a chemical compound in which one or more atoms have been replaced by a radionuclide so by virtue of its radioactive decay it can be used to explore the mechanism of chemical reactions by tr ...
in medicine. In the initial variant of the
urea breath test The urea breath test is a rapid diagnostic procedure used to identify infections by ''Helicobacter pylori'', a spiral bacterium implicated in gastritis, gastric ulcer, and peptic ulcer disease. It is based upon the ability of ''H. pylori'' to co ...
, a diagnostic test for ''
Helicobacter pylori ''Helicobacter pylori'', previously known as ''Campylobacter pylori'', is a gram-negative, microaerophilic, spiral (helical) bacterium usually found in the stomach. Its helical shape (from which the genus name, helicobacter, derives) is though ...
'', urea labeled with approximately carbon-14 is fed to a patient (i.e., 37,000 decays per second). In the event of a ''H. pylori'' infection, the bacterial
urease Ureases (), functionally, belong to the superfamily of amidohydrolases and phosphotriesterases. Ureases are found in numerous bacteria, fungi, algae, plants, and some invertebrates, as well as in soils, as a soil enzyme. They are nickel-containi ...
enzyme breaks down the
urea Urea, also known as carbamide, is an organic compound with chemical formula . This amide has two amino groups (–) joined by a carbonyl functional group (–C(=O)–). It is thus the simplest amide of carbamic acid. Urea serves an important ...
into
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous wa ...
and radioactively-labeled carbon dioxide, which can be detected by low-level counting of the patient's breath. The urea breath test has been largely replaced by the urea breath test, which has no radiation issues.


See also

*
Carbon-to-nitrogen ratio A carbon-to-nitrogen ratio (C/N ratio or C:N ratio) is a ratio of the mass of carbon to the mass of nitrogen in organic residues. It can, amongst other things, be used in analysing sediments and soil including soil organic matter and soil amend ...
* Diamond battery *
Isotopes of carbon Carbon (6C) has 15 known isotopes, from to , of which and are stable. The longest-lived radioisotope is , with a half-life of years. This is also the only carbon radioisotope found in nature—trace quantities are formed cosmogenically by t ...
*
Isotopic labeling Isotopic labeling (or isotopic labelling) is a technique used to track the passage of an isotope (an atom with a detectable variation in neutron count) through a reaction, metabolic pathway, or cell. The reactant is 'labeled' by replacing specifi ...
*
Radiocarbon dating Radiocarbon dating (also referred to as carbon dating or carbon-14 dating) is a method for determining the age of an object containing organic material by using the properties of radiocarbon, a radioactive isotope of carbon. The method was dev ...


References


Further reading

*


External links


What is Carbon Dating?
Woods Hole Oceanographic Institute The Woods Hole Oceanographic Institution (WHOI, acronym pronounced ) is a private, nonprofit research and higher education facility dedicated to the study of marine science and engineering. Established in 1930 in Woods Hole, Massachusetts, it ...
{{isotope, element=carbon , lighter=
carbon-13 Carbon-13 (13C) is a natural, stable isotope of carbon with a nucleus containing six protons and seven neutrons. As one of the environmental isotopes, it makes up about 1.1% of all natural carbon on Earth. Detection by mass spectrometry A mass ...
, heavier= carbon-15 , before= boron-14,
nitrogen-18 Natural nitrogen (7N) consists of two stable isotopes: the vast majority (99.6%) of naturally occurring nitrogen is nitrogen-14, with the remainder being nitrogen-15. Fourteen radioisotopes are also known, with atomic masses ranging from 10 to 25, ...
, after=
nitrogen-14 Natural nitrogen (7N) consists of two stable isotopes: the vast majority (99.6%) of naturally occurring nitrogen is nitrogen-14, with the remainder being nitrogen-15. Fourteen radioisotopes are also known, with atomic masses ranging from 10 to 25 ...
Isotopes of carbon Environmental isotopes Radionuclides used in radiometric dating