HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''
cardinal number In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the cas ...
s''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
s''. Natural numbers are also used as labels, like jersey numbers on a sports team, where they serve as '' nominal numbers'' and do not have mathematical properties. The natural numbers form a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
, commonly symbolized as a bold or blackboard bold . Many other number sets are built from the natural numbers. For example, the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s are made by adding 0 and negative numbers. The
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (for example, The set of all ...
s add fractions, and the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s add all infinite decimals.
Complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s add the square root of . This chain of extensions canonically embeds the natural numbers in the other number systems. Natural numbers are studied in different areas of math.
Number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
looks at things like how numbers divide evenly (
divisibility In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a ''Multiple (mathematics), multiple'' of m. An integer n is divis ...
), or how
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s are spread out.
Combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ...
studies counting and arranging numbered objects, such as partitions and enumerations.


History


Ancient roots

The most primitive method of representing a natural number is to use one's fingers, as in
finger counting Finger-counting, also known as dactylonomy, is the act of counting using one's fingers. There are multiple different systems used across time and between cultures, though many of these have seen a decline in use because of the spread of Arabic nu ...
. Putting down a
tally mark Tally marks, also called hash marks, are a form of numeral used for counting. They can be thought of as a unary numeral system. They are most useful in counting or tallying ongoing results, such as the score in a game or sport, as no interm ...
for each object is another primitive method. Later, a set of objects could be tested for equality, excess or shortage—by striking out a mark and removing an object from the set. The first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers. The ancient
Egyptians Egyptians (, ; , ; ) are an ethnic group native to the Nile, Nile Valley in Egypt. Egyptian identity is closely tied to Geography of Egypt, geography. The population is concentrated in the Nile Valley, a small strip of cultivable land stretchi ...
developed a powerful system of numerals with distinct hieroglyphs for 1, 10, and all powers of 10 up to over 1 million. A stone carving from
Karnak The Karnak Temple Complex, commonly known as Karnak (), comprises a vast mix of temples, pylons, chapels, and other buildings near Luxor, Egypt. Construction at the complex began during the reign of Senusret I (reigned 1971–1926 BC) in the ...
, dating back from around 1500 BCE and now at the
Louvre The Louvre ( ), or the Louvre Museum ( ), is a national art museum in Paris, France, and one of the most famous museums in the world. It is located on the Rive Droite, Right Bank of the Seine in the city's 1st arrondissement of Paris, 1st arron ...
in Paris, depicts 276 as 2 hundreds, 7 tens, and 6 ones; and similarly for the number 4,622. The
Babylonia Babylonia (; , ) was an Ancient history, ancient Akkadian language, Akkadian-speaking state and cultural area based in the city of Babylon in central-southern Mesopotamia (present-day Iraq and parts of Kuwait, Syria and Iran). It emerged as a ...
ns had a place-value system based essentially on the numerals for 1 and 10, using base sixty, so that the symbol for sixty was the same as the symbol for one—its value being determined from context. A much later advance was the development of the idea that  can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation (within other numbers) dates back as early as 700 BCE by the Babylonians, who omitted such a digit when it would have been the last symbol in the number. The Olmec and
Maya civilization The Maya civilization () was a Mesoamerican civilization that existed from antiquity to the early modern period. It is known by its ancient temples and glyphs (script). The Maya script is the most sophisticated and highly developed writin ...
s used 0 as a separate number as early as the , but this usage did not spread beyond
Mesoamerica Mesoamerica is a historical region and cultural area that begins in the southern part of North America and extends to the Pacific coast of Central America, thus comprising the lands of central and southern Mexico, all of Belize, Guatemala, El S ...
. The use of a numeral 0 in modern times originated with the Indian mathematician
Brahmagupta Brahmagupta ( – ) was an Indian Indian mathematics, mathematician and Indian astronomy, astronomer. He is the author of two early works on mathematics and astronomy: the ''Brāhmasphuṭasiddhānta'' (BSS, "correctly established Siddhanta, do ...
in 628 CE. However, 0 had been used as a number in the medieval
computus As a moveable feast, the date of Easter is determined in each year through a calculation known as – often simply ''Computus'' – or as paschalion particularly in the Eastern Orthodox Church. Easter is celebrated on the first Sunday after th ...
(the calculation of the date of Easter), beginning with
Dionysius Exiguus Dionysius Exiguus (Latin for "Dionysius the Humble"; Greek: Διονύσιος; – ) was a 6th-century Eastern Roman monk born in Scythia Minor. He was a member of a community of Scythian monks concentrated in Tomis (present-day Constanț ...
in 525 CE, without being denoted by a numeral. Standard
Roman numerals Roman numerals are a numeral system that originated in ancient Rome and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. Numbers are written with combinations of letters from the Latin alphabet, eac ...
do not have a symbol for 0; instead, ''nulla'' (or the genitive form ''nullae'') from , the Latin word for "none", was employed to denote a 0 value. The first systematic study of numbers as
abstraction Abstraction is a process where general rules and concepts are derived from the use and classifying of specific examples, literal (reality, real or Abstract and concrete, concrete) signifiers, first principles, or other methods. "An abstraction" ...
s is usually credited to the Greek philosophers
Pythagoras Pythagoras of Samos (;  BC) was an ancient Ionian Greek philosopher, polymath, and the eponymous founder of Pythagoreanism. His political and religious teachings were well known in Magna Graecia and influenced the philosophies of P ...
and
Archimedes Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, Sicily, Syracuse in History of Greek and Hellenis ...
. Some Greek mathematicians treated the number 1 differently than larger numbers, sometimes even not as a number at all.
Euclid Euclid (; ; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of geometry that largely domina ...
, for example, defined a unit first and then a number as a multitude of units, thus by his definition, a unit is not a number and there are no unique numbers (e.g., any two units from indefinitely many units is a 2). However, in the definition of
perfect number In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfec ...
which comes shortly afterward, Euclid treats 1 as a number like any other. Independent studies on numbers also occurred at around the same time in
India India, officially the Republic of India, is a country in South Asia. It is the List of countries and dependencies by area, seventh-largest country by area; the List of countries by population (United Nations), most populous country since ...
, China, and
Mesoamerica Mesoamerica is a historical region and cultural area that begins in the southern part of North America and extends to the Pacific coast of Central America, thus comprising the lands of central and southern Mexico, all of Belize, Guatemala, El S ...
.


Emergence as a term

Nicolas Chuquet used the term ''progression naturelle'' (natural progression) in 1484. The earliest known use of "natural number" as a complete English phrase is in 1763. The 1771 Encyclopaedia Britannica defines natural numbers in the logarithm article. Starting at 0 or 1 has long been a matter of definition. In 1727, Bernard Le Bovier de Fontenelle wrote that his notions of distance and element led to defining the natural numbers as including or excluding 0. In 1889,
Giuseppe Peano Giuseppe Peano (; ; 27 August 1858 – 20 April 1932) was an Italian mathematician and glottologist. The author of over 200 books and papers, he was a founder of mathematical logic and set theory, to which he contributed much Mathematical notati ...
used N for the positive integers and started at 1, but he later changed to using N0 and N1. Historically, most definitions have excluded 0, but many mathematicians such as George A. Wentworth,
Bertrand Russell Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British philosopher, logician, mathematician, and public intellectual. He had influence on mathematics, logic, set theory, and various areas of analytic ...
,
Nicolas Bourbaki Nicolas Bourbaki () is the collective pseudonym of a group of mathematicians, predominantly French alumni of the École normale supérieure (Paris), École normale supérieure (ENS). Founded in 1934–1935, the Bourbaki group originally intende ...
,
Paul Halmos Paul Richard Halmos (; 3 March 1916 – 2 October 2006) was a Kingdom of Hungary, Hungarian-born United States, American mathematician and probabilist who made fundamental advances in the areas of mathematical logic, probability theory, operat ...
,
Stephen Cole Kleene Stephen Cole Kleene ( ; January 5, 1909 – January 25, 1994) was an American mathematician. One of the students of Alonzo Church, Kleene, along with Rózsa Péter, Alan Turing, Emil Post, and others, is best known as a founder of the branch of ...
, and John Horton Conway have preferred to include 0. Mathematicians have noted tendencies in which definition is used, such as algebra texts including 0, number theory and analysis texts excluding 0, logic and set theory texts including 0, dictionaries excluding 0, school books (through high-school level) excluding 0, and upper-division college-level books including 0. There are exceptions to each of these tendencies and as of 2023 no formal survey has been conducted. Arguments raised include
division by zero In mathematics, division by zero, division (mathematics), division where the divisor (denominator) is 0, zero, is a unique and problematic special case. Using fraction notation, the general example can be written as \tfrac a0, where a is the di ...
and the size of the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
.
Computer language A computer language is a formal language used to communicate with a computer. Types of computer languages include: * Software construction#Construction languages, Construction language – all forms of communication by which a human can Comput ...
s often start from zero when enumerating items like loop counters and string- or array-elements. Including 0 began to rise in popularity in the 1960s. The
ISO 31-11 ISO 31-11:1992 was the part of international standard ISO 31 that defines ''mathematical signs and symbols for use in physical sciences and technology''. It was superseded in 2009 by ISO 80000-2:2009 and subsequently revised in 2019 as ISO-80000 ...
standard included 0 in the natural numbers in its first edition in 1978 and this has continued through its present edition as ISO 80000-2.


Formal construction

In 19th century Europe, there was mathematical and philosophical discussion about the exact nature of the natural numbers.
Henri Poincaré Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philosophy of science, philosopher of science. He is often described as a polymath, and in mathemati ...
stated that axioms can only be demonstrated in their finite application, and concluded that it is "the power of the mind" which allows conceiving of the indefinite repetition of the same act.
Leopold Kronecker Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, abstract algebra and logic, and criticized Georg Cantor's work on set theory. Heinrich Weber quoted Kronecker as having said, ...
summarized his belief as "God made the integers, all else is the work of man". The constructivists saw a need to improve upon the logical rigor in the
foundations of mathematics Foundations of mathematics are the mathematical logic, logical and mathematics, mathematical framework that allows the development of mathematics without generating consistency, self-contradictory theories, and to have reliable concepts of theo ...
. In the 1860s,
Hermann Grassmann Hermann Günther Grassmann (, ; 15 April 1809 – 26 September 1877) was a German polymath known in his day as a linguist and now also as a mathematician. He was also a physicist, general scholar, and publisher. His mathematical work was littl ...
suggested a
recursive definition In mathematics and computer science, a recursive definition, or inductive definition, is used to define the elements in a set in terms of other elements in the set ( Aczel 1977:740ff). Some examples of recursively definable objects include fact ...
for natural numbers, thus stating they were not really natural—but a consequence of definitions. Later, two classes of such formal definitions emerged, using set theory and Peano's axioms respectively. Later still, they were shown to be equivalent in most practical applications. Set-theoretical definitions of natural numbers were initiated by Frege. He initially defined a natural number as the class of all sets that are in one-to-one correspondence with a particular set. However, this definition turned out to lead to paradoxes, including
Russell's paradox In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox published by the British philosopher and mathematician, Bertrand Russell, in 1901. Russell's paradox shows that every set theory that contains ...
. To avoid such paradoxes, the formalism was modified so that a natural number is defined as a particular set, and any set that can be put into one-to-one correspondence with that set is said to have that number of elements. In 1881,
Charles Sanders Peirce Charles Sanders Peirce ( ; September 10, 1839 – April 19, 1914) was an American scientist, mathematician, logician, and philosopher who is sometimes known as "the father of pragmatism". According to philosopher Paul Weiss (philosopher), Paul ...
provided the first axiomatization of natural-number arithmetic. In 1888, Richard Dedekind proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of Dedekind's axioms in his book ''The principles of arithmetic presented by a new method'' (). This approach is now called Peano arithmetic. It is based on an axiomatization of the properties of
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
s: each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several weak systems of
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
. One such system is ZFC with the axiom of infinity replaced by its negation. Theorems that can be proved in ZFC but cannot be proved using the Peano Axioms include Goodstein's theorem.


Notation

The
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of all natural numbers is standardly denoted or \mathbb N. Older texts have occasionally employed as the symbol for this set. Since natural numbers may contain or not, it may be important to know which version is referred to. This is often specified by the context, but may also be done by using a subscript or a superscript in the notation, such as: * Naturals without zero: \=\mathbb^*= \mathbb N^+=\mathbb_0\smallsetminus\ = \mathbb_1 * Naturals with zero: \;\=\mathbb_0=\mathbb N^0=\mathbb^*\cup\ Alternatively, since the natural numbers naturally form a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s (often they may be referred to as the positive, or the non-negative integers, respectively. To be unambiguous about whether 0 is included or not, sometimes a superscript "*" or "+" is added in the former case, and a subscript (or superscript) "0" is added in the latter case: :\ = \=\mathbb Z^+= \mathbb_ :\ = \=\mathbb Z^_=\mathbb_


Properties

This section uses the convention \mathbb=\mathbb_0=\mathbb^*\cup\.


Addition

Given the set \mathbb of natural numbers and the
successor function In mathematics, the successor function or successor operation sends a natural number to the next one. The successor function is denoted by ''S'', so ''S''(''n'') = ''n'' +1. For example, ''S''(1) = 2 and ''S''(2) = 3. The successor functio ...
S \colon \mathbb \to \mathbb sending each natural number to the next one, one can define
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
of natural numbers recursively by setting and for all , . Thus, , , and so on. The
algebraic structure In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
(\mathbb, +) is a
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
monoid In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity ...
with
identity element In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
 0. It is a
free monoid In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences (or strings) of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero ...
on one generator. This commutative monoid satisfies the cancellation property, so it can be embedded in a group. The smallest group containing the natural numbers is the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s. If 1 is defined as , then . That is, is simply the successor of .


Multiplication

Analogously, given that addition has been defined, a
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
operator \times can be defined via and . This turns (\mathbb^*, \times) into a free commutative monoid with identity element 1; a generator set for this monoid is the set of
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
s.


Relationship between addition and multiplication

Addition and multiplication are compatible, which is expressed in the distribution law: . These properties of addition and multiplication make the natural numbers an instance of a
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
semiring In abstract algebra, a semiring is an algebraic structure. Semirings are a generalization of rings, dropping the requirement that each element must have an additive inverse. At the same time, semirings are a generalization of bounded distribu ...
. Semirings are an algebraic generalization of the natural numbers where multiplication is not necessarily commutative. The lack of additive inverses, which is equivalent to the fact that \mathbb is not closed under subtraction (that is, subtracting one natural from another does not always result in another natural), means that \mathbb is ''not'' a ring; instead it is a
semiring In abstract algebra, a semiring is an algebraic structure. Semirings are a generalization of rings, dropping the requirement that each element must have an additive inverse. At the same time, semirings are a generalization of bounded distribu ...
(also known as a ''rig''). If the natural numbers are taken as "excluding 0", and "starting at 1", the definitions of + and × are as above, except that they begin with and . Furthermore, (\mathbb, +) has no identity element.


Order

In this section, juxtaposed variables such as indicate the product , and the standard
order of operations In mathematics and computer programming, the order of operations is a collection of rules that reflect conventions about which operations to perform first in order to evaluate a given mathematical expression. These rules are formalized with a ...
is assumed. A
total order In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( re ...
on the natural numbers is defined by letting if and only if there exists another natural number where . This order is compatible with the arithmetical operations in the following sense: if , and are natural numbers and , then and . An important property of the natural numbers is that they are
well-order In mathematics, a well-order (or well-ordering or well-order relation) on a set is a total ordering on with the property that every non-empty subset of has a least element in this ordering. The set together with the ordering is then calle ...
ed: every non-empty set of natural numbers has a least element. The rank among well-ordered sets is expressed by an
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
; for the natural numbers, this is denoted as (omega).


Division

In this section, juxtaposed variables such as indicate the product , and the standard
order of operations In mathematics and computer programming, the order of operations is a collection of rules that reflect conventions about which operations to perform first in order to evaluate a given mathematical expression. These rules are formalized with a ...
is assumed. While it is in general not possible to divide one natural number by another and get a natural number as result, the procedure of ''division with remainder'' or
Euclidean division In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than ...
is available as a substitute: for any two natural numbers and with there are natural numbers and such that :a = bq + r \text r < b. The number is called the '' quotient'' and is called the ''
remainder In mathematics, the remainder is the amount "left over" after performing some computation. In arithmetic, the remainder is the integer "left over" after dividing one integer by another to produce an integer quotient ( integer division). In a ...
'' of the division of by . The numbers and are uniquely determined by and . This Euclidean division is key to the several other properties (
divisibility In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a ''Multiple (mathematics), multiple'' of m. An integer n is divis ...
), algorithms (such as the
Euclidean algorithm In mathematics, the Euclidean algorithm,Some widely used textbooks, such as I. N. Herstein's ''Topics in Algebra'' and Serge Lang's ''Algebra'', use the term "Euclidean algorithm" to refer to Euclidean division or Euclid's algorithm, is a ...
), and ideas in number theory.


Algebraic properties satisfied by the natural numbers

The addition (+) and multiplication (×) operations on natural numbers as defined above have several algebraic properties: * Closure under addition and multiplication: for all natural numbers and , both and are natural numbers. *
Associativity In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a Validity (logic), valid rule of replaceme ...
: for all natural numbers , , and , and . *
Commutativity In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a p ...
: for all natural numbers and , and . * Existence of
identity element In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
s: for every natural number , and . ** If the natural numbers are taken as "excluding 0", and "starting at 1", then for every natural number , . However, the "existence of additive identity element" property is not satisfied *
Distributivity In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality x \cdot (y + z) = x \cdot y + x \cdot z is always true in elementary algebra. For example, in elementary ...
of multiplication over addition for all natural numbers , , and , . * No nonzero
zero divisor In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right ze ...
s: if and are natural numbers such that , then or (or both).


Generalizations

Two important generalizations of natural numbers arise from the two uses of counting and ordering:
cardinal number In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the cas ...
s and
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
s. * A natural number can be used to express the size of a finite set; more precisely, a cardinal number is a measure for the size of a set, which is even suitable for infinite sets. The numbering of cardinals usually begins at zero, to accommodate the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
\emptyset. This concept of "size" relies on maps between sets, such that two sets have the same size, exactly if there exists a
bijection In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
between them. The set of natural numbers itself, and any bijective image of it, is said to be ''
countably infinite In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbe ...
'' and to have
cardinality The thumb is the first digit of the hand, next to the index finger. When a person is standing in the medical anatomical position (where the palm is facing to the front), the thumb is the outermost digit. The Medical Latin English noun for thum ...
aleph-null In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets. They were introduced by the mathematician Georg Cantor and are named after the symbol he used ...
(). * Natural numbers are also used as linguistic ordinal numbers: "first", "second", "third", and so forth. The numbering of ordinals usually begins at zero, to accommodate the order type of the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
\emptyset. This way they can be assigned to the elements of a totally ordered finite set, and also to the elements of any
well-order In mathematics, a well-order (or well-ordering or well-order relation) on a set is a total ordering on with the property that every non-empty subset of has a least element in this ordering. The set together with the ordering is then calle ...
ed countably infinite set without limit points. This assignment can be generalized to general well-orderings with a cardinality beyond countability, to yield the ordinal numbers. An ordinal number may also be used to describe the notion of "size" for a well-ordered set, in a sense different from cardinality: if there is an
order isomorphism In the mathematical field of order theory, an order isomorphism is a special kind of monotone function that constitutes a suitable notion of isomorphism for partially ordered sets (posets). Whenever two posets are order isomorphic, they can be co ...
(more than a bijection) between two well-ordered sets, they have the same ordinal number. The first ordinal number that is not a natural number is expressed as ; this is also the ordinal number of the set of natural numbers itself. The least ordinal of cardinality (that is, the initial ordinal of ) is but many well-ordered sets with cardinal number have an ordinal number greater than . For finite well-ordered sets, there is a one-to-one correspondence between ordinal and cardinal numbers; therefore they can both be expressed by the same natural number, the number of elements of the set. This number can also be used to describe the position of an element in a larger finite, or an infinite,
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
. A countable non-standard model of arithmetic satisfying the Peano Arithmetic (that is, the first-order Peano axioms) was developed by Skolem in 1933. The hypernatural numbers are an uncountable model that can be constructed from the ordinary natural numbers via the ultrapower construction. Other generalizations are discussed in . Georges Reeb used to claim provocatively that "The naïve integers don't fill up \mathbb".


Formal definitions

There are two standard methods for formally defining natural numbers. The first one, named for
Giuseppe Peano Giuseppe Peano (; ; 27 August 1858 – 20 April 1932) was an Italian mathematician and glottologist. The author of over 200 books and papers, he was a founder of mathematical logic and set theory, to which he contributed much Mathematical notati ...
, consists of an autonomous axiomatic theory called Peano arithmetic, based on few axioms called
Peano axioms In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nea ...
. The second definition is based on
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
. It defines the natural numbers as specific
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
s. More precisely, each natural number is defined as an explicitly defined set, whose elements allow counting the elements of other sets, in the sense that the sentence "a set has elements" means that there exists a one to one correspondence between the two sets and . The sets used to define natural numbers satisfy Peano axioms. It follows that every
theorem In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to esta ...
that can be stated and proved in Peano arithmetic can also be proved in set theory. However, the two definitions are not equivalent, as there are theorems that can be stated in terms of Peano arithmetic and proved in set theory, which are not ''provable'' inside Peano arithmetic. A probable example is
Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive number, positive integers , , and satisfy the equation for any integer value of greater than . The cases ...
. The definition of the integers as sets satisfying Peano axioms provide a
model A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin , . Models can be divided in ...
of Peano arithmetic inside set theory. An important consequence is that, if set theory is
consistent In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences ...
(as it is usually guessed), then Peano arithmetic is consistent. In other words, if a contradiction could be proved in Peano arithmetic, then set theory would be contradictory, and every theorem of set theory would be both true and wrong.


Peano axioms

The five Peano axioms are the following: # 0 is a natural number. # Every natural number has a successor which is also a natural number. # 0 is not the successor of any natural number. # If the successor of x equals the successor of y , then x equals y. # The axiom of induction: If a statement is true of 0, and if the truth of that statement for a number implies its truth for the successor of that number, then the statement is true for every natural number. These are not the original axioms published by Peano, but are named in his honor. Some forms of the Peano axioms have 1 in place of 0. In ordinary arithmetic, the successor of x is x + 1.


Set-theoretic definition

Intuitively, the natural number is the common property of all
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
s that have elements. So, it seems natural to define as an
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
under the relation "can be made in one to one correspondence". This does not work in all set theories, as such an equivalence class would not be a set (because of
Russell's paradox In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox published by the British philosopher and mathematician, Bertrand Russell, in 1901. Russell's paradox shows that every set theory that contains ...
). The standard solution is to define a particular set with elements that will be called the natural number . The following definition was first published by
John von Neumann John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, in ...
, although Levy attributes the idea to unpublished work of Zermelo in 1916. As this definition extends to
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only set ...
as a definition of
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
, the sets considered below are sometimes called von Neumann ordinals. The definition proceeds as follows: * Call , the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
. * Define the ''successor'' of any set by . * By the axiom of infinity, there exist sets which contain 0 and are closed under the successor function. Such sets are said to be ''inductive''. The intersection of all inductive sets is still an inductive set. * This intersection is the set of the ''natural numbers''. It follows that the natural numbers are defined iteratively as follows: :*, :*, :*, :* , :* , :* etc. It can be checked that the natural numbers satisfy the
Peano axioms In mathematical logic, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th-century Italian mathematician Giuseppe Peano. These axioms have been used nea ...
. With this definition, given a natural number , the sentence "a set has elements" can be formally defined as "there exists a
bijection In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
from to ." This formalizes the operation of ''counting'' the elements of . Also, if and only if is a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of . In other words, the set inclusion defines the usual
total order In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( re ...
on the natural numbers. This order is a
well-order In mathematics, a well-order (or well-ordering or well-order relation) on a set is a total ordering on with the property that every non-empty subset of has a least element in this ordering. The set together with the ordering is then calle ...
. It follows from the definition that each natural number is equal to the set of all natural numbers less than it. This definition, can be extended to the von Neumann definition of ordinals for defining all
ordinal number In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, th, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the leas ...
s, including the infinite ones: "each ordinal is the well-ordered set of all smaller ordinals." If one does not accept the axiom of infinity, the natural numbers may not form a set. Nevertheless, the natural numbers can still be individually defined as above, and they still satisfy the Peano axioms. There are other set theoretical constructions. In particular,
Ernst Zermelo Ernst Friedrich Ferdinand Zermelo (; ; 27 July 187121 May 1953) was a German logician and mathematician, whose work has major implications for the foundations of mathematics. He is known for his role in developing Zermelo–Fraenkel set theory, Z ...
provided a construction that is nowadays only of historical interest, and is sometimes referred to as . It consists in defining as the empty set, and . With this definition each nonzero natural number is a
singleton set In mathematics, a singleton (also known as a unit set or one-point set) is a set with exactly one element. For example, the set \ is a singleton whose single element is 0. Properties Within the framework of Zermelo–Fraenkel set theory, the a ...
. So, the property of the natural numbers to represent cardinalities is not directly accessible; only the ordinal property (being the th element of a sequence) is immediate. Unlike von Neumann's construction, the Zermelo ordinals do not extend to infinite ordinals.


See also

* * *
Sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
 – Function of the natural numbers in another set * * *


Notes


References


Bibliography

* * * * ** ** * * * * * * * * * * * * * * – English translation of .


External links

* * {{Authority control Cardinal numbers Elementary mathematics Integers Number theory Sets of real numbers