In the
philosophy of mathematics
The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics. It aims to understand the nature and methods of mathematics, and find out the place of mathematics in people's ...
, constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in
classical mathematics In the foundations of mathematics, classical mathematics refers generally to the mainstream approach to mathematics, which is based on classical logic and ZFC set theory. It stands in contrast to other types of mathematics such as constructive m ...
, one can prove the
existence
Existence is the ability of an entity to interact with reality. In philosophy, it refers to the ontology, ontological Property (philosophy), property of being.
Etymology
The term ''existence'' comes from Old French ''existence'', from Medieval ...
of a mathematical object without "finding" that object explicitly, by assuming its non-existence and then deriving a
contradiction
In traditional logic, a contradiction occurs when a proposition conflicts either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's ...
from that assumption. Such a
proof by contradiction
In logic and mathematics, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Proof by contradiction is also known as ...
might be called non-constructive, and a constructivist might reject it. The constructive viewpoint involves a verificational interpretation of the
existential quantifier
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, w ...
, which is at odds with its classical interpretation.
There are many forms of constructivism. These include the program of
intuitionism
In the philosophy of mathematics, intuitionism, or neointuitionism (opposed to preintuitionism), is an approach where mathematics is considered to be purely the result of the constructive mental activity of humans rather than the discovery of fu ...
founded by
Brouwer Brouwer (also Brouwers and de Brouwer) is a Dutch and Flemish surname. The word ''brouwer'' means 'beer brewer'.
Brouwer
* Adriaen Brouwer (1605–1638), Flemish painter
* Alexander Brouwer (b. 1989), Dutch beach volleyball player
* Andries Bro ...
, the
finitism
Finitism is a philosophy of mathematics that accepts the existence only of finite mathematical objects. It is best understood in comparison to the mainstream philosophy of mathematics where infinite mathematical objects (e.g., infinite sets) are ac ...
of
Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many ...
and
Bernays, the
constructive recursive mathematics of
Shanin and
Markov Markov (Bulgarian, russian: Марков), Markova, and Markoff are common surnames used in Russia and Bulgaria. Notable people with the name include:
Academics
*Ivana Markova (born 1938), Czechoslovak-British emeritus professor of psychology at t ...
, and
Bishop
A bishop is an ordained clergy member who is entrusted with a position of authority and oversight in a religious institution.
In Christianity, bishops are normally responsible for the governance of dioceses. The role or office of bishop is ca ...
's program of
constructive analysis
In mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics.
This contrasts with ''classical analysis'', which (in this context) simply means analysis done according to the (more comm ...
. Constructivism also includes the study of
constructive set theories such as
CZF and the study of
topos theory
In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the category of sets and possess a notion ...
.
Constructivism is often identified with intuitionism, although intuitionism is only one constructivist program. Intuitionism maintains that the foundations of mathematics lie in the individual mathematician's intuition, thereby making mathematics into an intrinsically subjective activity. Other forms of constructivism are not based on this viewpoint of intuition, and are compatible with an objective viewpoint on mathematics.
Constructive mathematics
Much constructive mathematics uses
intuitionistic logic
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems ...
, which is essentially
classical logic
Classical logic (or standard logic or Frege-Russell logic) is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy.
Characteristics
Each logical system in this class ...
without the
law of the excluded middle
In logic, the law of excluded middle (or the principle of excluded middle) states that for every proposition, Exclusive or, either this proposition or its negation is Truth value, true. It is one of the so-called Law of thought#The three tradit ...
. This law states that, for any proposition, either that proposition is true or its negation is. This is not to say that the law of the excluded middle is denied entirely; special cases of the law will be provable. It is just that the general law is not assumed as an
axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
. The
law of non-contradiction
In logic, the law of non-contradiction (LNC) (also known as the law of contradiction, principle of non-contradiction (PNC), or the principle of contradiction) states that contradictory propositions cannot both be true in the same sense at the sa ...
(which states that contradictory statements cannot both at the same time be true) is still valid.
For instance, in
Heyting arithmetic In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism.Troelstra 1973:18 It is named after Arend Heyting, who first proposed it.
Axiomatization
As with first-order Peano a ...
, one can prove that for any proposition ''p'' that ''does not contain
quantifiers'',
is a theorem (where ''x'', ''y'', ''z'' ... are the
free variables
In mathematics, and in other disciplines involving formal languages, including mathematical logic and computer science, a free variable is a notation (symbol) that specifies places in an expression where substitution may take place and is not ...
in the proposition ''p''). In this sense, propositions restricted to the
finite
Finite is the opposite of infinite. It may refer to:
* Finite number (disambiguation)
* Finite set, a set whose cardinality (number of elements) is some natural number
* Finite verb, a verb form that has a subject, usually being inflected or marked ...
are still regarded as being either true or false, as they are in classical mathematics, but this
bivalence
In logic, the semantic principle (or law) of bivalence states that every declarative sentence expressing a proposition (of a theory under inspection) has exactly one truth value, either true or false. A logic satisfying this principle is called ...
does not extend to propositions that refer to
infinite
Infinite may refer to:
Mathematics
*Infinite set, a set that is not a finite set
*Infinity, an abstract concept describing something without any limit
Music
* Infinite (group), a South Korean boy band
*''Infinite'' (EP), debut EP of American m ...
collections.
In fact,
L.E.J. Brouwer
Luitzen Egbertus Jan Brouwer (; ; 27 February 1881 – 2 December 1966), usually cited as L. E. J. Brouwer but known to his friends as Bertus, was a Dutch mathematician and philosopher, who worked in topology, set theory, measure theory and compl ...
, founder of the intuitionist school, viewed the law of the excluded middle as abstracted from finite experience, and then applied to the infinite without
justification. For instance,
Goldbach's conjecture
Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers.
The conjecture has been shown to hold ...
is the assertion that every even number (greater than 2) is the sum of two
prime number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
s. It is possible to test for any particular even number whether or not it is the sum of two primes (for instance by exhaustive search), so any one of them is either the sum of two primes or it is not. And so far, every one thus tested has in fact been the sum of two primes.
But there is no known proof that all of them are so, nor any known proof that not all of them are so; nor is it even known whether ''either'' a proof ''or'' a disproof of Goldbach's conjecture must exist (the conjecture may be ''undecidable'' in traditional ZF set theory). Thus to Brouwer, we are not justified in asserting "either Goldbach's conjecture is true, or it is not." And while the conjecture may one day be solved, the argument applies to similar unsolved problems; to Brouwer, the law of the excluded middle was tantamount to assuming that ''every'' mathematical problem has a solution.
With the omission of the law of the excluded middle as an axiom, the remaining
logical system
A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system.
A form ...
has an
existence property
In mathematical logic, the disjunction and existence properties are the "hallmarks" of constructive theories such as Heyting arithmetic and constructive set theories (Rathjen 2005).
Disjunction property
The disjunction property is satisfi ...
that classical logic does not have: whenever
is proven constructively, then in fact
is proven constructively for (at least) one particular
, often called a witness. Thus the proof of the existence of a mathematical object is tied to the possibility of its construction.
Example from real analysis
In classical
real analysis
In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include converg ...
, one way to
define a real number is as an
equivalence class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a ...
of
Cauchy sequence
In mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in m ...
s of
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ration ...
s.
In constructive mathematics, one way to construct a real number is as a
function
Function or functionality may refer to:
Computing
* Function key, a type of key on computer keyboards
* Function model, a structured representation of processes in a system
* Function object or functor or functionoid, a concept of object-oriente ...
''ƒ'' that takes a positive integer
and outputs a rational ''ƒ''(''n''), together with a function ''g'' that takes a positive integer ''n'' and outputs a positive integer ''g''(''n'') such that
:
so that as ''n'' increases, the values of ''ƒ''(''n'') get closer and closer together. We can use ''ƒ'' and ''g'' together to compute as close a rational approximation as we like to the real number they represent.
Under this definition, a simple representation of the real number
''e'' is:
:
This definition corresponds to the classical definition using Cauchy sequences, except with a constructive twist: for a classical Cauchy sequence, it is required that, for any given distance,
there exists (in a classical sense) a member in the sequence after which all members are closer together than that distance. In the constructive version, it is required that, for any given distance, it is possible to actually specify a point in the sequence where this happens (this required specification is often called the
modulus of convergence
In real analysis, a branch of mathematics, a modulus of convergence is a function that tells how quickly a convergent sequence converges. These moduli are often employed in the study of computable analysis and constructive mathematics.
If a sequ ...
). In fact, the
standard constructive interpretation of the mathematical statement
:
is precisely the existence of the function computing the modulus of convergence. Thus the difference between the two definitions of real numbers can be thought of as the difference in the interpretation of the statement "for all... there exists..."
This then opens the question as to what sort of
function
Function or functionality may refer to:
Computing
* Function key, a type of key on computer keyboards
* Function model, a structured representation of processes in a system
* Function object or functor or functionoid, a concept of object-oriente ...
from a
countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
to a countable set, such as ''f'' and ''g'' above, can actually be constructed. Different versions of constructivism diverge on this point. Constructions can be defined as broadly as
free choice sequences, which is the intuitionistic view, or as narrowly as algorithms (or more technically, the
computable function
Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do ...
s), or even left unspecified. If, for instance, the algorithmic view is taken, then the reals as constructed here are essentially what classically would be called the
computable number
In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers, effective numbers or the computable reals or recursive ...
s.
Cardinality
To take the algorithmic interpretation above would seem at odds with classical notions of
cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
. By enumerating algorithms, we can show classically that the
computable number
In mathematics, computable numbers are the real numbers that can be computed to within any desired precision by a finite, terminating algorithm. They are also known as the recursive numbers, effective numbers or the computable reals or recursive ...
s are countable. And yet
Cantor's diagonal argument
In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof, was published in 1891 by Georg Cantor as a m ...
shows that real numbers have higher cardinality. Furthermore, the diagonal argument seems perfectly constructive. To identify the real numbers with the computable numbers would then be a contradiction.
And in fact, Cantor's diagonal argument ''is'' constructive, in the sense that given a
bijection
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other s ...
between the real numbers and natural numbers, one constructs a real number that doesn't fit, and thereby proves a contradiction. We can indeed enumerate algorithms to construct a function ''T'', about which we initially assume that it is a function from the natural numbers
onto
In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of i ...
the reals. But, to each algorithm, there may or may not correspond a real number, as the algorithm may fail to satisfy the constraints, or even be non-terminating (''T'' is a
partial function
In mathematics, a partial function from a set to a set is a function from a subset of (possibly itself) to . The subset , that is, the domain of viewed as a function, is called the domain of definition of . If equals , that is, if is de ...
), so this fails to produce the required bijection. In short, one who takes the view that real numbers are (individually) effectively computable interprets Cantor's result as showing that the real numbers (collectively) are not
recursively enumerable
In computability theory, a set ''S'' of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if:
*There is an algorithm such that the ...
.
Still, one might expect that since ''T'' is a partial function from the natural numbers onto the real numbers, that therefore the real numbers are ''no more than'' countable. And, since every natural number can be
trivially represented as a real number, therefore the real numbers are ''no less than'' countable. They are, therefore ''exactly'' countable. However this reasoning is not constructive, as it still does not construct the required bijection. The classical theorem proving the existence of a bijection in such circumstances, namely the
Cantor–Bernstein–Schroeder theorem, is non-constructive. It has recently been shown that the
Cantor–Bernstein–Schroeder theorem implies the
law of the excluded middle
In logic, the law of excluded middle (or the principle of excluded middle) states that for every proposition, Exclusive or, either this proposition or its negation is Truth value, true. It is one of the so-called Law of thought#The three tradit ...
, hence there can be no constructive proof of the theorem.
Axiom of choice
The status of the
axiom of choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collectio ...
in constructive mathematics is complicated by the different approaches of different constructivist programs. One trivial meaning of "constructive", used informally by mathematicians, is "provable in
ZF set theory ZF, Z-F, or Zf may refer to:
Businesses and organizations
* ZF Friedrichshafen, a German supplier of automobile transmissions
* Zionist Federation of Great Britain and Ireland, an organization established to campaign for a permanent homeland for th ...
without the axiom of choice." However, proponents of more limited forms of constructive mathematics would assert that ZF itself is not a constructive system.
In intuitionistic theories of
type theory
In mathematics, logic, and computer science, a type theory is the formal presentation of a specific type system, and in general type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundat ...
(especially higher-type arithmetic), many forms of the axiom of choice are permitted. For example, the axiom AC
11 can be paraphrased to say that for any relation ''R'' on the set of real numbers, if you have proved that for each real number ''x'' there is a real number ''y'' such that ''R''(''x'',''y'') holds, then there is actually a function ''F'' such that ''R''(''x'',''F''(''x'')) holds for all real numbers. Similar choice principles are accepted for all finite types. The motivation for accepting these seemingly nonconstructive principles is the intuitionistic understanding of the proof that "for each real number ''x'' there is a real number ''y'' such that ''R''(''x'',''y'') holds". According to the
BHK interpretation BHK is a three-letter abbreviation that may refer to:
* BHK interpretation of intuitionistic predicate logic
* Baby hamster kidney cells used in molecular biology
* Bachelor of Human Kinetics (BHk) degree.
* Baltische Historische Kommission, organi ...
, this proof itself is essentially the function ''F'' that is desired. The choice principles that intuitionists accept do not imply the
law of the excluded middle
In logic, the law of excluded middle (or the principle of excluded middle) states that for every proposition, Exclusive or, either this proposition or its negation is Truth value, true. It is one of the so-called Law of thought#The three tradit ...
.
However, in certain axiom systems for constructive set theory, the axiom of choice does imply the law of the excluded middle (in the presence of other axioms), as shown by the
Diaconescu-Goodman-Myhill theorem. Some constructive set theories include weaker forms of the axiom of choice, such as the
axiom of dependent choice In mathematics, the axiom of dependent choice, denoted by \mathsf , is a weak form of the axiom of choice ( \mathsf ) that is still sufficient to develop most of real analysis. It was introduced by Paul Bernays in a 1942 article that explores whi ...
in Myhill's set theory.
Measure theory
Classical
measure theory
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many simil ...
is fundamentally non-constructive, since the classical definition of
Lebesgue measure
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides wit ...
does not describe any way how to compute the measure of a set or the integral of a function. In fact, if one thinks of a function just as a rule that "inputs a real number and outputs a real number" then there cannot be any algorithm to compute the integral of a function, since any algorithm would only be able to call finitely many values of the function at a time, and finitely many values are not enough to compute the integral to any nontrivial accuracy. The solution to this conundrum, carried out first in , is to consider only functions that are written as the pointwise limit of continuous functions (with known modulus of continuity), with information about the rate of convergence. An advantage of constructivizing measure theory is that if one can prove that a set is constructively of full measure, then there is an algorithm for finding a point in that set (again see ). For example, this approach can be used to construct a real number that is
normal Normal(s) or The Normal(s) may refer to:
Film and television
* ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson
* ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie
* ''Norma ...
to every base.
The place of constructivism in mathematics
Traditionally, some mathematicians have been suspicious, if not antagonistic, towards mathematical constructivism, largely because of limitations they believed it to pose for constructive analysis.
These views were forcefully expressed by
David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many a ...
in 1928, when he wrote in
Grundlagen der Mathematik
''Grundlagen der Mathematik'' (English: ''Foundations of Mathematics'') is a two-volume work by David Hilbert and Paul Bernays. Originally published in 1934 and 1939, it presents fundamental mathematical ideas and introduced second-order arithme ...
, "Taking the principle of excluded middle from the mathematician would be the same, say, as proscribing the telescope to the astronomer or to the boxer the use of his fists".
Stanford Encyclopedia of Philosophy
The ''Stanford Encyclopedia of Philosophy'' (''SEP'') combines an online encyclopedia of philosophy with peer-reviewed publication of original papers in philosophy, freely accessible to Internet users. It is maintained by Stanford University. Eac ...
Constructive Mathematics
Errett Bishop
Errett Albert Bishop (July 14, 1928 – April 14, 1983) was an Americans, American mathematician known for his work on analysis. He expanded constructive analysis in his 1967 ''Foundations of Constructive Analysis'', where he Mathematical proof, p ...
, in his 1967 work ''Foundations of Constructive Analysis'', worked to dispel these fears by developing a great deal of traditional analysis in a constructive framework.
Even though most mathematicians do not accept the constructivist's thesis that only mathematics done based on constructive methods is sound, constructive methods are increasingly of interest on non-ideological grounds. For example, constructive proofs in analysis may ensure
witness extraction, in such a way that working within the constraints of the constructive methods may make finding witnesses to theories easier than using classical methods. Applications for constructive mathematics have also been found in
typed lambda calculi,
topos theory
In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the category of sets and possess a notion ...
and
categorical logic
__NOTOC__
Categorical logic is the branch of mathematics in which tools and concepts from category theory are applied to the study of mathematical logic. It is also notable for its connections to theoretical computer science.
In broad terms, categ ...
, which are notable subjects in foundational mathematics and
computer science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical discipli ...
. In algebra, for such entities as
topoi
In mathematics, a topos (, ; plural topoi or , or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the category of sets and possess a noti ...
and
Hopf algebra Hopf is a German surname. Notable people with the surname include:
*Eberhard Hopf (1902–1983), Austrian mathematician
*Hans Hopf (1916–1993), German tenor
*Heinz Hopf (1894–1971), German mathematician
*Heinz Hopf (actor) (1934–2001), Swedis ...
s, the structure supports an
internal language
__NOTOC__
Categorical logic is the branch of mathematics in which tools and concepts from category theory are applied to the study of mathematical logic. It is also notable for its connections to theoretical computer science.
In broad terms, categ ...
that is a constructive theory; working within the constraints of that language is often more intuitive and flexible than working externally by such means as reasoning about the set of possible concrete algebras and their
homomorphism
In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word ''homomorphism'' comes from the Ancient Greek language: () meaning "same" ...
s.
Physicist
Lee Smolin
Lee Smolin (; born June 6, 1955) is an American theoretical physicist, a faculty member at the Perimeter Institute for Theoretical Physics, an adjunct professor of physics at the University of Waterloo and a member of the graduate faculty of the ...
writes in ''
Three Roads to Quantum Gravity'' that topos theory is "the right form of logic for cosmology" (page 30) and "In its first forms it was called 'intuitionistic logic'" (page 31). "In this kind of logic, the statements an observer can make about the universe are divided into at least three groups: those that we can judge to be true, those that we can judge to be false and those whose truth we cannot decide upon at the present time" (page 28).
Mathematicians who have made major contributions to constructivism
*
Leopold Kronecker
Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, algebra and logic. He criticized Georg Cantor's work on set theory, and was quoted by as having said, "'" ("God made the integers, ...
(old constructivism, semi-intuitionism)
*
L. E. J. Brouwer
Luitzen Egbertus Jan Brouwer (; ; 27 February 1881 – 2 December 1966), usually cited as L. E. J. Brouwer but known to his friends as Bertus, was a Dutch mathematician and philosopher, who worked in topology, set theory, measure theory and compl ...
(founder of intuitionism)
*
A. A. Markov (forefather of Russian school of constructivism)
*
Arend Heyting
__NOTOC__
Arend Heyting (; 9 May 1898 – 9 July 1980) was a Dutch mathematician and logician.
Biography
Heyting was a student of Luitzen Egbertus Jan Brouwer at the University of Amsterdam, and did much to put intuitionistic logic on a foot ...
(formalized intuitionistic logic and theories)
*
Per Martin-Löf
Per Erik Rutger Martin-Löf (; ; born 8 May 1942) is a Swedish logician, philosopher, and mathematical statistician. He is internationally renowned for his work on the foundations of probability, statistics, mathematical logic, and computer scie ...
(founder of constructive type theories)
*
Errett Bishop
Errett Albert Bishop (July 14, 1928 – April 14, 1983) was an Americans, American mathematician known for his work on analysis. He expanded constructive analysis in his 1967 ''Foundations of Constructive Analysis'', where he Mathematical proof, p ...
(promoted a version of constructivism claimed to be consistent with classical mathematics)
*
Paul Lorenzen
Paul Lorenzen (March 24, 1915 – October 1, 1994) was a German philosopher and mathematician, founder of the Erlangen School (with Wilhelm Kamlah) and inventor of game semantics (with Kuno Lorenz).
Biography
Lorenzen studied at the University ...
(developed constructive analysis)
Branches
*
Constructive logic
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems o ...
*
Constructive type theory
Intuitionistic type theory (also known as constructive type theory, or Martin-Löf type theory) is a type theory and an alternative foundation of mathematics.
Intuitionistic type theory was created by Per Martin-Löf, a Swedish mathematician and ph ...
*
Constructive analysis
In mathematics, constructive analysis is mathematical analysis done according to some principles of constructive mathematics.
This contrasts with ''classical analysis'', which (in this context) simply means analysis done according to the (more comm ...
*
Constructive non-standard analysis In mathematics, constructive nonstandard analysis is a version of Abraham Robinson's nonstandard analysis, developed by Moerdijk (1995), Palmgren (1998), Ruokolainen (2004). Ruokolainen wrote:
:The possibility of constructivization of nonstanda ...
See also
*
*
*
*
*
*
*
*
Notes
References
*
*
*
*
*
*
*
*
*
*
*
External links
*
Stanford Encyclopedia of Philosophy entry
{{DEFAULTSORT:Constructivism (Mathematics)
Epistemology