Heyting Arithmetic
   HOME
*





Heyting Arithmetic
In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism.Troelstra 1973:18 It is named after Arend Heyting, who first proposed it. Axiomatization As with first-order Peano arithmetic , the intended model of this theory are the natural numbers and the theories characterize addition and multiplication. Heyting arithmetic adopts the axioms of Peano arithmetic, including the signature with zero "0" and the successor "S", but uses intuitionistic logic for inference. In particular, the principle of the excluded middle does not hold in general. Metalogic and theorems As with other theories over intuitionistic logic, various instances of can be proven. For instance, proves equality "=" is decidable for all numbers, :\vdash \forall n. \forall m. \big((n = m)\lor\neg(n = m)\big) In fact, since equality is the only predicate symbol in Heyting arithmetic, it then follows that, for any quantifier-free formula \phi, w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kurt Gödel
Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an immense effect upon scientific and philosophical thinking in the 20th century, a time when others such as Bertrand Russell,For instance, in their "Principia Mathematica' (''Stanford Encyclopedia of Philosophy'' edition). Alfred North Whitehead, and David Hilbert were using logic and set theory to investigate the foundations of mathematics, building on earlier work by the likes of Richard Dedekind, Georg Cantor and Frege. Gödel published his first incompleteness theorem in 1931 when he was 25 years old, one year after finishing his doctorate at the University of Vienna. The first incompleteness theorem states that for any ω-consistent recursive axiomatic system powerful enough to describe the arithmetic of the natural numbers (for example P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Disjunction And Existence Properties
In mathematical logic, the disjunction and existence properties are the "hallmarks" of constructive theories such as Heyting arithmetic and constructive set theories (Rathjen 2005). Disjunction property The disjunction property is satisfied by a theory if, whenever a sentence ''A'' ∨ ''B'' is a theorem, then either ''A'' is a theorem, or ''B'' is a theorem. Existence property The existence property or witness property is satisfied by a theory if, whenever a sentence is a theorem, where ''A''(''x'') has no other free variables, then there is some term ''t'' such that the theory proves . Related properties Rathjen (2005) lists five properties that a theory may possess. These include the disjunction property (DP), the existence property (EP), and three additional properties: * The numerical existence property (NEP) states that if the theory proves (\exists x \in \mathbb)\varphi(x), where ''φ'' has no other free variables, then the theory proves \varphi(\ba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


General Recursive Function
In mathematical logic and computer science, a general recursive function, partial recursive function, or μ-recursive function is a partial function from natural numbers to natural numbers that is "computable" in an intuitive sense – as well as in a formal one. If the function is total, it is also called a total recursive function (sometimes shortened to recursive function). In computability theory, it is shown that the μ-recursive functions are precisely the functions that can be computed by Turing machines (this is one of the theorems that supports the Church–Turing thesis). The μ-recursive functions are closely related to primitive recursive functions, and their inductive definition (below) builds upon that of the primitive recursive functions. However, not every total recursive function is a primitive recursive function—the most famous example is the Ackermann function. Other equivalent classes of functions are the functions of lambda calculus and the functions tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




BHK Interpretation
BHK is a three-letter abbreviation that may refer to: * BHK interpretation of intuitionistic predicate logic * Baby hamster kidney cells used in molecular biology * Bachelor of Human Kinetics (BHk) degree. * Baltische Historische Kommission, organization dealing with history of Baltic Germans * ''Biblia Hebraica'' (Kittel), by Rudolf Kittel * Bush Hill Park railway station Bush Hill Park is a London Overground station on the branch of the Lea Valley lines, serving the neighbourhood of Bush Hill Park in the London Borough of Enfield, north London. It is down the line from London Liverpool Street and is situate ..., London, UK, National Rail station code * Bukhara International Airport, Uzbekistan, IATA code * Prosperous Armenia, Armenian political party * ''Bedroom - Hall - Kitchen'', as used in India to describe apartments: 2 BHK, 3 BHK… {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nels David Nelson
(Nels) David Nelson, an American mathematician and logician, was born on January 2, 1918, in Cape Girardeau, Missouri. Upon graduation from the Ph.D. program at the University of Wisconsin-Madison, Nelson relocated to Washington, D.C. Nelson remained in Washington, D.C. as a Professor of Mathematics at The George Washington University until his death on August 22, 2003. Education David Nelson completed his undergraduate and graduate coursework at the University of Wisconsin-Madison in 1939 and 1940, respectivelNelson completed his Ph.D. at Madison in 1946. His dissertation, entitled "Recursive Functions and Intuitionistic Number Theory," served as the capstone project for his doctorate. Fellow mathematician Stephen Cole Kleene served as Nelson's doctoral advisor. Nelson, consequently, was Kleene's first doctoral studen According to the ''Association for Symbolic Logic'': Nelson's research was in the area of intuitionistic logic and its connection with recursive function theory. He ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Realizability
In mathematical logic, realizability is a collection of methods in proof theory used to study constructive proofs and extract additional information from them. Formulas from a formal theory are "realized" by objects, known as "realizers", in a way that knowledge of the realizer gives knowledge about the truth of the formula. There are many variations of realizability; exactly which class of formulas is studied and which objects are realizers differ from one variation to another. Realizability can be seen as a formalization of the BHK interpretation of intuitionistic logic; in realizability the notion of "proof" (which is left undefined in the BHK interpretation) is replaced with a formal notion of "realizer". Most variants of realizability begin with a theorem that any statement that is provable in the formal system being studied is realizable. The realizer, however, usually gives more information about the formula than a formal proof would directly provide. Beyond giving insight in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alonzo Church
Alonzo Church (June 14, 1903 – August 11, 1995) was an American mathematician, computer scientist, logician, philosopher, professor and editor who made major contributions to mathematical logic and the foundations of theoretical computer science. He is best known for the lambda calculus, the Church–Turing thesis, proving the unsolvability of the Entscheidungsproblem, the Frege–Church ontology, and the Church–Rosser theorem. He also worked on philosophy of language (see e.g. Church 1970). Alongside his student Alan Turing, Church is considered one of the founders of computer science. Life Alonzo Church was born on June 14, 1903, in Washington, D.C., where his father, Samuel Robbins Church, was a Justice of the Peace and the judge of the Municipal Court for the District of Columbia. He was the grandson of Alonzo Webster Church (1829-1909), United States Senate Librarian from 1881-1901, and great grandson of Alonzo Church, a Professor of Mathematics and Astronomy and 6th Pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kleene
Stephen Cole Kleene ( ; January 5, 1909 – January 25, 1994) was an American mathematician. One of the students of Alonzo Church, Kleene, along with Rózsa Péter, Alan Turing, Emil Post, and others, is best known as a founder of the branch of mathematical logic known as recursion theory, which subsequently helped to provide the foundations of theoretical computer science. Kleene's work grounds the study of computable functions. A number of mathematical concepts are named after him: Kleene hierarchy, Kleene algebra, the Kleene star (Kleene closure), Kleene's recursion theorem and the Kleene fixed-point theorem. He also invented regular expressions in 1951 to describe McCulloch-Pitts neural networks, and made significant contributions to the foundations of mathematical intuitionism. Biography Kleene was awarded a bachelor's degree from Amherst College in 1930. He was awarded a Ph.D. in mathematics from Princeton University in 1934, where his thesis, entitled ''A Theory of Positi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Halting Problem
In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. Alan Turing proved in 1936 that a general algorithm to solve the halting problem for all possible program–input pairs cannot exist. For any program that might determine whether programs halt, a "pathological" program , called with some input, can pass its own source and its input to ''f'' and then specifically do the opposite of what ''f'' predicts ''g'' will do. No ''f'' can exist that handles this case. A key part of the proof is a mathematical definition of a computer and program, which is known as a Turing machine; the halting problem is '' undecidable'' over Turing machines. It is one of the first cases of decision problems proven to be unsolvable. This proof is significant to practical computing efforts, defining a class of applications which no programming inventi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kleene's T Predicate
In computability theory, the T predicate, first studied by mathematician Stephen Cole Kleene, is a particular set of triples of natural numbers that is used to represent computable functions within formal theories of arithmetic. Informally, the ''T'' predicate tells whether a particular computer program will halt when run with a particular input, and the corresponding ''U'' function is used to obtain the results of the computation if the program does halt. As with the smn theorem, the original notation used by Kleene has become standard terminology for the concept.The predicate described here was presented in (Kleene 1943) and (Kleene 1952), and this is what is usually called "Kleene's ''T'' predicate". (Kleene 1967) uses the letter ''T'' to describe a different predicate related to computable functions, but which cannot be used to obtain Kleene's normal form theorem. Definition The definition depends on a suitable Gödel numbering that assigns natural numbers to computable fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Church's Thesis (constructive Mathematics)
In constructive mathematics, Church's thesis is an axiom stating that all total functions are computable functions. This principle has formalizations in various mathematical frameworks. The similarly named Church–Turing thesis states that every effectively calculable function is a computable function. The constructivist variant is stronger in the sense that with it any function is computable. For any property \exists y. \varphi(x,y) proven not to be validated for all x in a computable manner, the contrapositive of the axiom implies that this then not validated by a total functional at all. So adopting restricts the notion of ''function'' to that of ''computable function''. The axiom is clearly incompatible with systems that prove the existence of functions also proven not to be computable. For example, Peano arithmetic is such a system. Concretely, the constructive Heyting arithmetic with as an additional axiom is able to disprove some instances of variants of the principl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]