In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, complex geometry is the study of
geometric structures and constructions arising out of, or described by, the
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s. In particular, complex geometry is concerned with the study of
spaces such as
complex manifold
In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic.
The term complex manifold is variously used to mean a com ...
s and
complex algebraic varieties
In algebraic geometry, a complex algebraic variety is an algebraic variety (in the scheme sense or otherwise) over the field of complex numbers. Parshin, Alexei N., and Igor Rostislavovich Shafarevich, eds. ''Algebraic Geometry III: Complex Algeb ...
, functions of
several complex variables
The theory of functions of several complex variables is the branch of mathematics dealing with complex-valued functions. The name of the field dealing with the properties of function of several complex variables is called several complex variable ...
, and holomorphic constructions such as
holomorphic vector bundles and
coherent sheaves
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with refer ...
. Application of transcendental methods to
algebraic geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
falls in this category, together with more geometric aspects of
complex analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
.
Complex geometry sits at the intersection of algebraic geometry,
differential geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
, and complex analysis, and uses tools from all three areas. Because of the blend of techniques and ideas from various areas, problems in complex geometry are often more tractable or concrete than in general. For example, the classification of complex manifolds and complex algebraic varieties through the
minimal model program
In algebraic geometry, the minimal model program is part of the birational classification of algebraic varieties. Its goal is to construct a birational model of any complex projective variety which is as simple as possible. The subject has its or ...
and the construction of
moduli space
In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spac ...
s sets the field apart from differential geometry, where the classification of possible
smooth manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
s is a significantly harder problem. Additionally, the extra structure of complex geometry allows, especially in the
compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to:
* Interstate compact
* Blood compact, an ancient ritual of the Philippines
* Compact government, a type of colonial rule utilized in British ...
setting, for
global analytic results to be proven with great success, including
Shing-Tung Yau
Shing-Tung Yau (; ; born April 4, 1949) is a Chinese-American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University. In April 2022, Yau announced retirement from Harvard to become Chair Professor of mathem ...
's proof of the
Calabi conjecture
In the mathematical field of differential geometry, the Calabi conjecture was a conjecture about the existence of certain kinds of Riemannian metrics on certain complex manifolds, made by . It was proved by , who received the Fields Medal and Oswal ...
, the
Hitchin–Kobayashi correspondence, the
nonabelian Hodge correspondence
In algebraic geometry and differential geometry, the nonabelian Hodge correspondence or Corlette–Simpson correspondence (named after Kevin Corlette and Carlos Simpson) is a correspondence between Higgs bundles and representations of the fundame ...
, and existence results for
Kähler–Einstein metric
In differential geometry, a Kähler–Einstein metric on a complex manifold is a Riemannian metric that is both a Kähler metric and an Einstein metric. A manifold is said to be Kähler–Einstein if it admits a Kähler–Einstein metric. The ...
s and
constant scalar curvature Kähler metric In differential geometry, a constant scalar curvature Kähler metric (cscK metric), is (as the name suggests) a Kähler metric on a complex manifold whose scalar curvature is constant. A special case is Kähler–Einstein metric, and a more general ...
s. These results often feed back into complex algebraic geometry, and for example recently the classification of Fano manifolds using
K-stability In mathematics, and especially differential geometry, differential and algebraic geometry, K-stability is an Algebraic Geometry, algebro-geometric stability condition, for complex manifolds and complex algebraic variety, complex algebraic varieties. ...
has benefited tremendously both from techniques in analysis and in pure
birational geometry
In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational fu ...
.
Complex geometry has significant applications to theoretical physics, where it is essential in understanding
conformal field theory
A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes ...
,
string theory
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interac ...
, and
mirror symmetry
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry.
In 2D ther ...
. It is often a source of examples in other areas of mathematics, including in
representation theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
where
generalized flag varieties In mathematics, a generalized flag variety (or simply flag variety) is a homogeneous space whose points are flags in a finite-dimensional vector space ''V'' over a field F. When F is the real or complex numbers, a generalized flag variety is a smoo ...
may be studied using complex geometry leading to the
Borel–Weil–Bott theorem
In mathematics, the Borel–Weil–Bott theorem is a basic result in the representation theory of Lie groups, showing how a family of representations can be obtained from holomorphic sections of certain complex vector bundles, and, more generally, ...
, or in
symplectic geometry
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed differential form, closed, nondegenerate form, nondegenerate different ...
, where
Kähler manifold
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnold ...
s are symplectic, in
Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to poin ...
where complex manifolds provide examples of exotic metric structures such as
Calabi–Yau manifold
In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring ...
s and
hyperkähler manifold
In differential geometry, a hyperkähler manifold is a Riemannian manifold (M, g) endowed with three integrable almost complex structures I, J, K that are Kähler with respect to the Riemannian metric g and satisfy the quaternionic relations I^2 ...
s, and in
gauge theory
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups) ...
, where
holomorphic vector bundles often admit solutions to important
differential equation
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
s arising out of physics such as the
Yang–Mills equations
In physics and mathematics, and especially differential geometry and gauge theory, the Yang–Mills equations are a system of partial differential equations for a connection on a vector bundle or principal bundle. They arise in physics as the E ...
. Complex geometry additionally is impactful in pure algebraic geometry, where analytic results in the complex setting such as
Hodge theory
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold ''M'' using partial differential equations. The key observation is that, given a Riemannian metric on ''M'', every cohom ...
of Kähler manifolds inspire understanding of
Hodge structure
In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structure ...
s for
varieties
Variety may refer to:
Arts and entertainment Entertainment formats
* Variety (radio)
* Variety show, in theater and television
Films
* ''Variety'' (1925 film), a German silent film directed by Ewald Andre Dupont
* ''Variety'' (1935 film), ...
and
schemes as well as
p-adic Hodge theory
In mathematics, ''p''-adic Hodge theory is a theory that provides a way to classify and study ''p''-adic Galois representations of characteristic 0 local fields with residual characteristic ''p'' (such as Q''p''). The theory has its beginnings in ...
,
deformation theory
In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution ''P'' of a problem to slightly different solutions ''P''ε, where ε is a small number, or a vector of small quantities. The infinitesim ...
for complex manifolds inspires understanding of the deformation theory of schemes, and results about the
cohomology
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewe ...
of complex manifolds inspired the formulation of the
Weil conjectures
In mathematics, the Weil conjectures were highly influential proposals by . They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.
Th ...
and
Grothendieck's
standard conjectures. On the other hand, results and techniques from many of these fields often feed back into complex geometry, and for example developments in the mathematics of string theory and mirror symmetry have revealed much about the nature of
Calabi–Yau manifold
In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring ...
s, which string theorists predict should have the structure of Lagrangian fibrations through the
SYZ conjecture
The SYZ conjecture is an attempt to understand the mirror symmetry conjecture, an issue in theoretical physics and mathematics. The original conjecture was proposed in a paper by Strominger, Yau, and Zaslow, entitled "Mirror Symmetry is ''T''- ...
, and the development of
Gromov–Witten theory of
symplectic manifolds has led to advances in
enumerative geometry
In mathematics, enumerative geometry is the branch of algebraic geometry concerned with counting numbers of solutions to geometric questions, mainly by means of intersection theory.
History
The problem of Apollonius is one of the earliest examp ...
of complex varieties.
The
Hodge conjecture
In mathematics, the Hodge conjecture is a major unsolved problem in algebraic geometry and complex geometry that relates the algebraic topology of a non-singular complex algebraic variety to its subvarieties.
In simple terms, the Hodge conjectu ...
, one of the
millennium prize problems
The Millennium Prize Problems are seven well-known complex mathematical problems selected by the Clay Mathematics Institute in 2000. The Clay Institute has pledged a US$1 million prize for the first correct solution to each problem. According ...
, is a problem in complex geometry.
Idea
Broadly, complex geometry is concerned with
spaces and
geometric objects which are modelled, in some sense, on the
complex plane
In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
. Features of the complex plane and
complex analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
of a single variable, such as an intrinsic notion of
orientability
In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space is ...
(that is, being able to consistently rotate 90 degrees counterclockwise at every point in the complex plane), and the rigidity of
holomorphic functions
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivati ...
(that is, the existence of a single complex derivative implies complex differentiability to all orders) are seen to manifest in all forms of the study of complex geometry. As an example, every complex manifold is canonically orientable, and a form of
Liouville's theorem holds on
compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to:
* Interstate compact
* Blood compact, an ancient ritual of the Philippines
* Compact government, a type of colonial rule utilized in British ...
complex manifolds or
projective complex algebraic varieties.
Complex geometry is different in flavour to what might be called ''real'' geometry, the study of spaces based around the geometric and analytical properties of the
real number line
In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
. For example, whereas
smooth manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
s admit
partitions of unity
In mathematics, a partition of unity of a topological space is a set of continuous functions from to the unit interval ,1such that for every point x\in X:
* there is a neighbourhood of where all but a finite number of the functions of are 0, ...
, collections of smooth functions which can be identically equal to one on some
open set
In mathematics, open sets are a generalization of open intervals in the real line.
In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are suf ...
, and identically zero elsewhere, complex manifolds admit no such collections of holomorphic functions. Indeed, this is the manifestation of the
identity theorem
In real analysis and complex analysis, branches of mathematics, the identity theorem for analytic functions states: given functions ''f'' and ''g'' analytic on a domain ''D'' (open and connected subset of \mathbb or \mathbb), if ''f'' = ''g'' on so ...
, a typical result in complex analysis of a single variable. In some sense, the novelty of complex geometry may be traced back to this fundamental observation.
It is true that every complex manifold is in particular a real smooth manifold. This is because the complex plane
is, after forgetting its complex structure, isomorphic to the real plane
. However, complex geometry is not typically seen as a particular sub-field of
differential geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
, the study of smooth manifolds. In particular,
Serre's
GAGA theorem says that every
projective analytic variety
In mathematics, and in particular differential geometry and complex geometry, a complex analytic variety Complex analytic variety (or just variety) is sometimes required to be irreducible
and (or) reduced or complex analytic space is a general ...
is actually an
algebraic variety
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Mo ...
, and the study of holomorphic data on an analytic variety is equivalent to the study of algebraic data.
This equivalence indicates that complex geometry is in some sense closer to
algebraic geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
than to
differential geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
. Another example of this which links back to the nature of the complex plane is that, in complex analysis of a single variable, singularities of
meromorphic functions
In the mathematical field of complex analysis, a meromorphic function on an open subset ''D'' of the complex plane is a function that is holomorphic on all of ''D'' ''except'' for a set of isolated points, which are pole (complex analysis), pole ...
are readily describable. In contrast, the possible singular behaviour of a continuous real-valued function is much more difficult to characterise. As a result of this, one can readily study
singular
Singular may refer to:
* Singular, the grammatical number that denotes a unit quantity, as opposed to the plural and other forms
* Singular homology
* SINGULAR, an open source Computer Algebra System (CAS)
* Singular or sounder, a group of boar, ...
spaces in complex geometry, such as singular complex
analytic varieties
In mathematics, and in particular differential geometry and complex geometry, a complex analytic variety Complex analytic variety (or just variety) is sometimes required to be irreducible
and (or) reduced or complex analytic space is a generali ...
or singular complex algebraic varieties, whereas in differential geometry the study of singular spaces is often avoided.
In practice, complex geometry sits in the intersection of differential geometry, algebraic geometry, and
analysis
Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (38 ...
in
several complex variables
The theory of functions of several complex variables is the branch of mathematics dealing with complex-valued functions. The name of the field dealing with the properties of function of several complex variables is called several complex variable ...
, and a complex geometer uses tools from all three fields to study complex spaces. Typical directions of interest in complex geometry involve
classification Classification is a process related to categorization, the process in which ideas and objects are recognized, differentiated and understood.
Classification is the grouping of related facts into classes.
It may also refer to:
Business, organizat ...
of complex spaces, the study of holomorphic objects attached to them (such as
holomorphic vector bundle In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold such that the total space is a complex manifold and the projection map is holomorphic. Fundamental examples are the holomorphic tangent bundle of a ...
s and
coherent sheaves
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with refer ...
), and the intimate relationships between complex geometric objects and other areas of mathematics and physics.
Definitions
Complex geometry is concerned with the study of
complex manifold
In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic.
The term complex manifold is variously used to mean a com ...
s, and
complex algebraic and
complex analytic varieties. In this section, these types of spaces are defined and the relationships between them presented.
A complex manifold is a
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ...
such that:
*
is
Hausdorff and
second countable
In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space T is second-countable if there exists some countable collection \mat ...
.
*
is locally
homeomorphic
In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphi ...
to an open subset of
for some
. That is, for every point
, there is an
open neighbourhood
In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space. It is closely related to the concepts of open set and interior. Intuitively speaking, a neighbourhood of a p ...
of
and a homeomorphism
to an open subset
. Such open sets are called ''charts''.
*If
and
are any two overlapping charts which map onto open sets
of
respectively, then the ''transition function''
is a
biholomorphism
In the mathematical theory of functions of one or more complex variables, and also in complex algebraic geometry, a biholomorphism or biholomorphic function is a bijective holomorphic function whose inverse is also holomorphic.
Formal definit ...
.
Notice that since every biholomorphism is a
diffeomorphism
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable.
Definition
Given two m ...
, and
is isomorphism as a
real vector space
Real may refer to:
Currencies
* Brazilian real (R$)
* Central American Republic real
* Mexican real
* Portuguese real
* Spanish real
* Spanish colonial real
Music Albums
* ''Real'' (L'Arc-en-Ciel album) (2000)
* ''Real'' (Bright album) (2010) ...
to
, every complex manifold of dimension
is in particular a smooth manifold of dimension
, which is always an even number.
In contrast to complex manifolds which are always smooth, complex geometry is also concerned with possibly singular spaces. An affine complex analytic variety is a subset
such that about each point
, there is an open neighbourhood
of
and a collection of finitely many holomorphic functions
such that
. By convention we also require the set
to be
irreducible
In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors that emerge only when the parts interact in a wider whole.
Emergence ...
. A point
is ''singular'' if the
Jacobian matrix
In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as ...
of the vector of holomorphic functions
does not have full rank at
, and ''non-singular'' otherwise. A projective complex analytic variety is a subset
of
complex projective space
In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a ...
that is, in the same way, locally given by the zeroes of a finite collection of holomorphic functions on open subsets of
.
One may similarly define an affine complex algebraic variety to be a subset
which is locally given as the zero set of finitely many polynomials in
complex variables. To define a projective complex algebraic variety, one requires the subset
to locally be given by the zero set of finitely many ''
homogeneous polynomials
In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, x^5 + 2 x^3 y^2 + 9 x y^4 is a homogeneous polynomial of degree 5, in two variables; ...
''.
In order to define a general complex algebraic or complex analytic variety, one requires the notion of a
locally ringed space
In mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of ...
. A complex algebraic/analytic variety is a locally ringed space
which is locally isomorphic as a locally ringed space to an affine complex algebraic/analytic variety. In the analytic case, one typically allows
to have a topology that is locally equivalent to the subspace topology due to the identification with open subsets of
, whereas in the algebraic case
is often equipped with a
Zariski topology
In algebraic geometry and commutative algebra, the Zariski topology is a topology which is primarily defined by its closed sets. It is very different from topologies which are commonly used in the real or complex analysis; in particular, it is n ...
. Again we also by convention require this locally ringed space to be irreducible.
Since the definition of a singular point is local, the definition given for an affine analytic/algebraic variety applies to the points of any complex analytic or algebraic variety. The set of points of a variety
which are singular is called the ''singular locus'', denoted
, and the complement is the ''non-singular'' or ''smooth locus'', denoted
. We say a complex variety is ''smooth'' or ''non-singular'' if it's singular locus is empty. That is, if it is equal to its non-singular locus.
By the
implicit function theorem for holomorphic functions, every complex manifold is in particular a non-singular complex analytic variety, but is not in general affine or projective. By Serre's GAGA theorem, every projective complex analytic variety is actually a projective complex algebraic variety. When a complex variety is non-singular, it is a complex manifold. More generally, the non-singular locus of ''any'' complex variety is a complex manifold.
Types of complex spaces
Kähler manifolds
Complex manifolds may be studied from the perspective of differential geometry, whereby they are equipped with extra geometric structures such as a
Riemannian metric
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent space ''T ...
or
symplectic form In mathematics, a symplectic vector space is a vector space ''V'' over a field ''F'' (for example the real numbers R) equipped with a symplectic bilinear form.
A symplectic bilinear form is a mapping that is
; Bilinear: Linear in each argument ...
. In order for this extra structure to be relevant to complex geometry, one should ask for it to be compatible with the complex structure in a suitable sense. A
Kähler manifold
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnold ...
is a complex manifold with a Riemannian metric and symplectic structure compatible with the complex structure. Every complex submanifold of a Kähler manifold is Kähler, and so in particular every non-singular affine or projective complex variety is Kähler, after restricting the standard Hermitian metric on
or the
Fubini-Study metric on
respectively.
Other important examples of Kähler manifolds include Riemann surfaces,
K3 surface
In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with trivial canonical bundle and irregularity zero. An (algebraic) K3 surface over any field means a smooth proper geometrically connected alg ...
s, and
Calabi–Yau manifold
In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring ...
s.
Stein manifolds
Serre's GAGA theorem asserts that projective complex analytic varieties are actually algebraic. Whilst this is not strictly true for affine varieties, there is a class of complex manifolds that act very much like affine complex algebraic varieties, called
Stein manifold In mathematics, in the theory of several complex variables and complex manifolds, a Stein manifold is a complex submanifold of the vector space of ''n'' complex dimensions. They were introduced by and named after . A Stein space is similar to a Stei ...
s. A manifold
is Stein if it is holomorphically convex and holomorphically separable (see the article on Stein manifolds for the technical definitions). It can be shown however that this is equivalent to
being a complex submanifold of
for some
. Another way in which Stein manifolds are similar to affine complex algebraic varieties is that
Cartan's theorems A and B
In mathematics, Cartan's theorems A and B are two results proved by Henri Cartan around 1951, concerning a coherent sheaf on a Stein manifold . They are significant both as applied to several complex variables, and in the general development of ...
hold for Stein manifolds.
Examples of Stein manifolds include non-compact Riemann surfaces and non-singular affine complex algebraic varieties.
Hyper-Kähler manifolds
A special class of complex manifolds is
hyper-Kähler manifolds, which are
Riemannian manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ...
s admitting three distinct compatible
integrable almost complex structures
In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first ...
which satisfy the
quaternionic relations . Thus, hyper-Kähler manifolds are Kähler manifolds in three different ways, and subsequently have a rich geometric structure.
Examples of hyper-Kähler manifolds include
ALE spaces,
K3 surface
In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with trivial canonical bundle and irregularity zero. An (algebraic) K3 surface over any field means a smooth proper geometrically connected alg ...
s,
Higgs bundle
In mathematics, a Higgs bundle is a pair (E,\varphi) consisting of a holomorphic vector bundle ''E'' and a Higgs field \varphi, a holomorphic 1-form taking values in the bundle of endomorphisms of ''E'' such that \varphi \wedge \varphi=0. Such pai ...
moduli spaces,
quiver varieties, and many other
moduli space
In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spac ...
s arising out of
gauge theory
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups) ...
and
representation theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
.
Calabi–Yau manifolds
As mentioned, a particular class of Kähler manifolds is given by Calabi–Yau manifolds. These are given by Kähler manifolds with trivial canonical bundle
. Typically the definition of a Calabi–Yau manifold also requires
to be compact. In this case
Yau's proof of the
Calabi conjecture
In the mathematical field of differential geometry, the Calabi conjecture was a conjecture about the existence of certain kinds of Riemannian metrics on certain complex manifolds, made by . It was proved by , who received the Fields Medal and Oswal ...
implies that
admits a Kähler metric with vanishing
Ricci curvature
In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measur ...
, and this may be taken as an equivalent definition of Calabi–Yau.
Calabi–Yau manifolds have found use in
string theory
In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interac ...
and
mirror symmetry
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry.
In 2D ther ...
, where they are used to model the extra 6 dimensions of spacetime in 10-dimensional models of string theory. Examples of Calabi–Yau manifolds are given by
elliptic curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If ...
s, K3 surfaces, and complex
Abelian varieties
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a Algebraic variety#Projective variety, projective algebraic variety that is also an algebraic group, i.e., has a group law th ...
.
Complex Fano varieties
A complex
Fano variety
In algebraic geometry, a Fano variety, introduced by Gino Fano in , is a complete variety ''X'' whose anticanonical bundle ''K''X* is ample. In this definition, one could assume that ''X'' is smooth over a field, but the minimal model program has ...
is a complex algebraic variety with
ample In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative" (or a mixture of the two). The most important notion of positivity is that of a ...
anti-canonical line bundle (that is,
is ample). Fano varieties are of considerable interest in complex algebraic geometry, and in particular
birational geometry
In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational fu ...
, where they often arise in the
minimal model program
In algebraic geometry, the minimal model program is part of the birational classification of algebraic varieties. Its goal is to construct a birational model of any complex projective variety which is as simple as possible. The subject has its or ...
. Fundamental examples of Fano varieties are given by projective space
where
, and smooth hypersurfaces of
of degree less than
.
Toric varieties
Toric varieties In algebraic geometry, a toric variety or torus embedding is an algebraic variety containing an algebraic torus as an open dense subset, such that the action of the torus on itself extends to the whole variety. Some authors also require it to be no ...
are complex algebraic varieties of dimension
containing an open
dense subset
In topology and related areas of mathematics, a subset ''A'' of a topological space ''X'' is said to be dense in ''X'' if every point of ''X'' either belongs to ''A'' or else is arbitrarily "close" to a member of ''A'' — for instance, the ra ...
biholomorphic to
, equipped with an action of
which extends the action on the open dense subset. A toric variety may be described combinatorially by its ''toric fan'', and at least when it is non-singular, by a ''
moment polytope''. This is a polygon in
with the property that any vertex may be put into the standard form of the vertex of the positive
orthant
In geometry, an orthant or hyperoctant is the analogue in ''n''-dimensional Euclidean space of a quadrant in the plane or an octant in three dimensions.
In general an orthant in ''n''-dimensions can be considered the intersection of ''n'' mutua ...
by the action of
. The toric variety can be obtained as a suitable space which fibres over the polytope.
Many constructions that are performed on toric varieties admit alternate descriptions in terms of the combinatorics and geometry of the moment polytope or its associated toric fan. This makes toric varieties a particularly attractive test case for many constructions in complex geometry. Examples of toric varieties include complex projective spaces, and bundles over them.
Techniques in complex geometry
Due to the rigidity of holomorphic functions and complex manifolds, the techniques typically used to study complex manifolds and complex varieties differ from those used in regular differential geometry, and are closer to techniques used in algebraic geometry. For example, in differential geometry, many problems are approached by taking local constructions and patching them together globally using partitions of unity. Partitions of unity do not exist in complex geometry, and so the problem of when local data may be glued into global data is more subtle. Precisely when local data may be patched together is measured by
sheaf cohomology In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when i ...
, and
sheaves and their
cohomology groups
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewe ...
are major tools.
For example, famous problems in the analysis of several complex variables preceding the introduction of modern definitions are the
Cousin problems
In mathematics, the Cousin problems are two questions in several complex variables, concerning the existence of meromorphic functions that are specified in terms of local data. They were introduced in special cases by Pierre Cousin in 1895. They ...
, asking precisely when local meromorphic data may be glued to obtain a global meromorphic function. These old problems can be simply solved after the introduction of sheaves and cohomology groups.
Special examples of sheaves used in complex geometry include holomorphic
line bundle
In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the ''tangent bundle'' is a way of organisin ...
s (and the
divisor
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
s associated to them),
holomorphic vector bundle In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold such that the total space is a complex manifold and the projection map is holomorphic. Fundamental examples are the holomorphic tangent bundle of a ...
s, and
coherent sheaves
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with refer ...
. Since sheaf cohomology measures obstructions in complex geometry, one technique that is used is to prove vanishing theorems. Examples of vanishing theorems in complex geometry include the
Kodaira vanishing theorem
In mathematics, the Kodaira vanishing theorem is a basic result of complex manifold theory and complex algebraic geometry, describing general conditions under which sheaf cohomology groups with indices ''q'' > 0 are automatically zero. The implica ...
for the cohomology of line bundles on compact Kähler manifolds, and
Cartan's theorems A and B
In mathematics, Cartan's theorems A and B are two results proved by Henri Cartan around 1951, concerning a coherent sheaf on a Stein manifold . They are significant both as applied to several complex variables, and in the general development of ...
for the cohomology of coherent sheaves on affine complex varieties.
Complex geometry also makes use of techniques arising out of differential geometry and analysis. For example, the
Hirzebruch-Riemann-Roch theorem, a special case of the
Atiyah-Singer index theorem, computes the
holomorphic Euler characteristic In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the ex ...
of a holomorphic vector bundle in terms of characteristic classes of the underlying smooth complex vector bundle.
Classification in complex geometry
One major theme in complex geometry is
classification Classification is a process related to categorization, the process in which ideas and objects are recognized, differentiated and understood.
Classification is the grouping of related facts into classes.
It may also refer to:
Business, organizat ...
. Due to the rigid nature of complex manifolds and varieties, the problem of classifying these spaces is often tractable. Classification in complex and algebraic geometry often occurs through the study of
moduli space
In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spac ...
s, which themselves are complex manifolds or varieties whose points classify other geometric objects arising in complex geometry.
Riemann surfaces
The term ''moduli'' was coined by
Bernhard Riemann
Georg Friedrich Bernhard Riemann (; 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rig ...
during his original work on Riemann surfaces. The classification theory is most well-known for compact Riemann surfaces. By the
classification of closed oriented surfaces, compact Riemann surfaces come in a countable number of discrete types, measured by their
genus
Genus ( plural genera ) is a taxonomic rank used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In the hierarchy of biological classification, genus com ...
, which is a non-negative integer counting the number of holes in the given compact Riemann surface.
The classification essentially follows from the
uniformization theorem
In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization ...
, and is as follows:
[Donaldson, S. (2011). Riemann surfaces. Oxford University Press.]
*''g = 0'':
*''g = 1'': There is a one-dimensional complex manifold classifying possible compact Riemann surfaces of genus 1, so-called
elliptic curves
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the ...
, the
modular curve
In number theory and algebraic geometry, a modular curve ''Y''(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular ...
. By the
uniformization theorem
In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization ...
any elliptic curve may be written as a quotient
where
is a complex number with strictly positive imaginary part. The moduli space is given by the quotient of the group
acting on the
upper half plane by
Möbius transformation
In geometry and complex analysis, a Möbius transformation of the complex plane is a rational function of the form
f(z) = \frac
of one complex variable ''z''; here the coefficients ''a'', ''b'', ''c'', ''d'' are complex numbers satisfying ''ad'' ...
s.
*''g > 1'': For each genus greater than one, there is a moduli space
of genus g compact Riemann surfaces, of dimension
. Similar to the case of elliptic curves, this space may be obtained by a suitable quotient of
Siegel upper half-space
In mathematics, the Siegel upper half-space of degree ''g'' (or genus ''g'') (also called the Siegel upper half-plane) is the set of ''g'' × ''g'' symmetric matrices over the complex numbers whose imaginary part is positive definite. It ...
by the action of the group
.
Holomorphic line bundles
Complex geometry is concerned not only with complex spaces, but other holomorphic objects attached to them. The classification of holomorphic line bundles on a complex variety
is given by the
Picard variety
In mathematics, the Picard group of a ringed space ''X'', denoted by Pic(''X''), is the group of isomorphism classes of invertible sheaves (or line bundles) on ''X'', with the group operation being tensor product. This construction is a global v ...
of
.
The picard variety can be easily described in the case where
is a compact Riemann surface of genus g. Namely, in this case the Picard variety is a disjoint union of complex
Abelian varieties
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a Algebraic variety#Projective variety, projective algebraic variety that is also an algebraic group, i.e., has a group law th ...
, each of which is isomorphic to the
Jacobian variety
In mathematics, the Jacobian variety ''J''(''C'') of a non-singular algebraic curve ''C'' of genus ''g'' is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of ''C'', hence an abelian vari ...
of the curve, classifying
divisors
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
of degree zero up to linear equivalence. In differential-geometric terms, these Abelian varieties are complex tori, complex manifolds diffeomorphic to
, possibly with one of many different complex structures.
By the
Torelli theorem
In mathematics, the Torelli theorem, named after Ruggiero Torelli, is a classical result of algebraic geometry over the complex number field, stating that a non-singular projective algebraic curve (compact Riemann surface) ''C'' is determined b ...
, a compact Riemann surface is determined by its Jacobian variety, and this demonstrates one reason why the study of structures on complex spaces can be useful, in that it can allow one to solve classify the spaces themselves.
See also
*
Bivector (complex)
In mathematics, a bivector is the vector part of a biquaternion. For biquaternion , ''w'' is called the biscalar and is its bivector part. The coordinates ''w'', ''x'', ''y'', ''z'' are complex numbers with imaginary unit h:
:x = x_1 + \mathrm x ...
*
Calabi–Yau manifold
In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring ...
*
Cartan's theorems A and B
In mathematics, Cartan's theorems A and B are two results proved by Henri Cartan around 1951, concerning a coherent sheaf on a Stein manifold . They are significant both as applied to several complex variables, and in the general development of ...
*
Complex analytic space
*
Complex Lie group
In geometry, a complex Lie group is a Lie group over the complex numbers; i.e., it is a complex-analytic manifold that is also a group in such a way G \times G \to G, (x, y) \mapsto x y^ is holomorphic. Basic examples are \operatorname_n(\mat ...
*
Complex polytope In geometry, a complex polytope is a generalization of a polytope in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one.
A complex polytope may be understood as a collecti ...
*
Complex projective space
In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a ...
*
Cousin problems
In mathematics, the Cousin problems are two questions in several complex variables, concerning the existence of meromorphic functions that are specified in terms of local data. They were introduced in special cases by Pierre Cousin in 1895. They ...
*
Deformation Theory#Deformations of complex manifolds
*
Enriques–Kodaira classification
In mathematics, the Enriques–Kodaira classification is a classification of compact complex surfaces into ten classes. For each of these classes, the surfaces in the class can be parametrized by a moduli space. For most of the classes the moduli ...
*
GAGA
Gaga ( he, גע גע literally 'touch touch') (also: ga-ga, gaga ball, or ga-ga ball) is a variant of dodgeball that is played in a gaga "pit". The game combines dodging, striking, running, and jumping, with the objective of being the last perso ...
*
Hartogs' extension theorem
*
Hermitian symmetric space
In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian ...
*
Hodge decomposition
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold ''M'' using partial differential equations. The key observation is that, given a Riemannian metric on ''M'', every coh ...
*
Hopf manifold In complex geometry, a Hopf manifold is obtained
as a quotient of the complex vector space
(with zero deleted) (^n\backslash 0)
by a free action of the group \Gamma \cong of
integers, with the generator \gamma
of \Gamma acting by holomorphic co ...
*
Imaginary line (mathematics)
In complex geometry, an imaginary line is a straight line that only contains one real point. It can be proven that this point is the intersection point with the conjugated line.
It is a special case of an imaginary curve.
An imaginary line is ...
*
Kobayashi metric
*
Kobayashi–Hitchin correspondence In differential geometry, algebraic geometry, and gauge theory, the Kobayashi–Hitchin correspondence (or Donaldson–Uhlenbeck–Yau theorem) relates stable vector bundles over a complex manifold to Einstein–Hermitian vector bundles. The co ...
*
Kähler manifold
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnold ...
*
-lemma
*
Lelong number
*
List of complex and algebraic surfaces
This is a list of named algebraic surfaces, compact complex surfaces, and families thereof, sorted according to their Kodaira dimension following Enriques–Kodaira classification.
Kodaira dimension −∞
Rational surfaces
* Projective plane Qua ...
*
Mirror symmetry
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry.
In 2D ther ...
*
Multiplier ideal
*
Projective variety
In algebraic geometry, a projective variety over an algebraically closed field ''k'' is a subset of some projective ''n''-space \mathbb^n over ''k'' that is the zero-locus of some finite family of homogeneous polynomials of ''n'' + 1 variables w ...
*
Pseudoconvexity
In mathematics, more precisely in the theory of functions of several complex variables, a pseudoconvex set is a special type of open set in the ''n''-dimensional complex space C''n''. Pseudoconvex sets are important, as they allow for classificatio ...
*
Several complex variables
The theory of functions of several complex variables is the branch of mathematics dealing with complex-valued functions. The name of the field dealing with the properties of function of several complex variables is called several complex variable ...
*
Stein manifold In mathematics, in the theory of several complex variables and complex manifolds, a Stein manifold is a complex submanifold of the vector space of ''n'' complex dimensions. They were introduced by and named after . A Stein space is similar to a Stei ...
References
*
*
*
*
*
E. H. Neville
Eric Harold Neville, known as E. H. Neville (1 January 1889 London, England – 22 August 1961 Reading, Berkshire, England) was an English mathematician. A heavily fictionalised portrayal of his life is rendered in the 2007 novel ''The Indian ...
(1922) ''Prolegomena to Analytical Geometry in Anisotropic Euclidean Space of Three Dimensions'',
Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press
A university press is an academic publishing hou ...
.
{{Authority control
Complex manifolds
Several complex variables
Algebraic geometry