HOME
*





Higgs Bundle
In mathematics, a Higgs bundle is a pair (E,\varphi) consisting of a holomorphic vector bundle ''E'' and a Higgs field \varphi, a holomorphic 1-form taking values in the bundle of endomorphisms of ''E'' such that \varphi \wedge \varphi=0. Such pairs were introduced by , who named the field \varphi after Peter Higgs because of an analogy with Higgs bosons. The term 'Higgs bundle', and the condition \varphi \wedge \varphi=0 (which is vacuous in Hitchin's original set-up on Riemann surfaces) was introduced later by Carlos Simpson. A Higgs bundle can be thought of as a "simplified version" of a flat holomorphic connection on a holomorphic vector bundle, where the derivative is scaled to zero. The nonabelian Hodge correspondence says that, under suitable stability conditions, the category of flat holomorphic connections on a smooth, projective complex algebraic variety, the category of representations of the fundamental group of the variety, and the category of Higgs bundles over thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauge Theory
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups). The term ''gauge'' refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called ''gauge transformations'', form a Lie group—referred to as the ''symmetry group'' or the ''gauge group'' of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the ''gauge field''. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called ''gauge invariance''). When such a theory is quantized, the quanta of the gauge fields are called '' gauge bosons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Notices Of The American Mathematical Society
''Notices of the American Mathematical Society'' is the membership journal of the American Mathematical Society (AMS), published monthly except for the combined June/July issue. The first volume appeared in 1953. Each issue of the magazine since January 1995 is available in its entirety on the journal web site. Articles are peer-reviewed by an editorial board of mathematical experts. Since 2019, the editor-in-chief is Erica Flapan. The cover regularly features mathematical visualization Mathematical phenomena can be understood and explored via visualization. Classically this consisted of two-dimensional drawings or building three-dimensional models (particularly plaster models in the 19th and early 20th century), while today it ...s. The ''Notices'' is self-described to be the world's most widely read mathematical journal. As the membership journal of the American Mathematical Society, the ''Notices'' is sent to the approximately 30,000 AMS members worldwide, one-third of whom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Differential Geometry
The ''Journal of Differential Geometry'' is a peer-reviewed scientific journal of mathematics published by International Press on behalf of Lehigh University in 3 volumes of 3 issues each per year. The journal publishes an annual supplement in book form called ''Surveys in Differential Geometry''. It covers differential geometry and related subjects such as differential equations, mathematical physics, algebraic geometry, and geometric topology. The editor-in-chief is Shing-Tung Yau of Harvard University. History The journal was established in 1967 by Chuan-Chih Hsiung, who was a professor in the Department of Mathematics at Lehigh University at the time. Hsiung served as the journal's editor-in-chief, and later co-editor-in-chief, until his death in 2009. In May 1996, the annual Geometry and Topology conference which was held at Harvard University was dedicated to commemorating the 30th anniversary of the journal and the 80th birthday of its founder. Similarly, in May 2008 Harv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hitchin System
In mathematics, the Hitchin integrable system is an integrable system depending on the choice of a complex reductive group and a compact Riemann surface, introduced by Nigel Hitchin in 1987. It lies on the crossroads of algebraic geometry, the theory of Lie algebras and integrable system theory. It also plays an important role in the geometric Langlands correspondence over the field of complex numbers through conformal field theory. A genus zero analogue of the Hitchin system, the Garnier system, was discovered by René Garnier somewhat earlier as a certain limit of the Schlesinger equations, and Garnier solved his system by defining spectral curves. (The Garnier system is the classical limit of the Gaudin model. In turn, the Schlesinger equations are the classical limit of the Knizhnik–Zamolodchikov equations). Almost all integrable systems of classical mechanics can be obtained as particular cases of the Hitchin system or their common generalization defined by Bottacin and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kähler Manifold
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics. Every smooth complex projective variety is a Kähler manifold. Hodge theory is a central part of algebraic geometry, proved using Kähler metrics. Definitions Since Kähler manifolds are equipped with several compatible structures, they can be described from different points of view: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SU(2)
In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case. The group operation is matrix multiplication. The special unitary group is a normal subgroup of the unitary group , consisting of all unitary matrices. As a compact classical group, is the group that preserves the standard inner product on \mathbb^n. It is itself a subgroup of the general linear group, \operatorname(n) \subset \operatorname(n) \subset \operatorname(n, \mathbb ). The groups find wide application in the Standard Model of particle physics, especially in the electroweak interaction and in quantum chromodynamics. The groups are important in quantum computing, as they represent the possible quantum logic gate operations in a quantum circuit with n qubits and thus 2^n basis states. (Alternatively, the more genera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Principal Bundle
In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equipped with # An action of G on P, analogous to (x, g)h = (x, gh) for a product space. # A projection onto X. For a product space, this is just the projection onto the first factor, (x,g) \mapsto x. Unlike a product space, principal bundles lack a preferred choice of identity cross-section; they have no preferred analog of (x,e). Likewise, there is not generally a projection onto G generalizing the projection onto the second factor, X \times G \to G that exists for the Cartesian product. They may also have a complicated topology that prevents them from being realized as a product space even if a number of arbitrary choices are made to try to define such a structure by defining it on smaller pieces of the space. A common example of a principal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hitchin's Equations
In mathematics, and in particular differential geometry and gauge theory, Hitchin's equations are a system of partial differential equations for a connection and Higgs field on a vector bundle or principal bundle over a Riemann surface, written down by Nigel Hitchin in 1987. Hitchin's equations are locally equivalent to the harmonic map equation for a surface into the symmetric space dual to the structure group. They also appear as a dimensional reduction of the self-dual Yang–Mills equations from four dimensions to two dimensions, and solutions to Hitchin's equations give examples of Higgs bundles and of holomorphic connections. The existence of solutions to Hitchin's equations on a compact Riemann surface follows from the stability of the corresponding Higgs bundle or the corresponding holomorphic connection, and this is the simplest form of the Nonabelian Hodge correspondence. The moduli space of solutions to Hitchin's equations was constructed by Hitchin in the rank two case o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact (mathematics)
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Group
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have isomorphic fundamental groups. The fundamental group of a topological space X is denoted by \pi_1(X). Intuition Start with a space (for example, a surface), and some point in it, and all the loops both starting and ending at this point— paths that start at this point, wander around and eventually return to the starting point. Two loops can be combined in an obvious way: travel along the first loop, then along the second. Two loops are considered equivalent if one can be deformed into the other without breakin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Holomorphic Vector Bundle
In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold such that the total space is a complex manifold and the projection map is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle. By Serre's GAGA, the category of holomorphic vector bundles on a smooth complex projective variety ''X'' (viewed as a complex manifold) is equivalent to the category of algebraic vector bundles (i.e., locally free sheaves of finite rank) on ''X''. Definition through trivialization Specifically, one requires that the trivialization maps :\phi_U : \pi^(U) \to U \times \mathbf^k are biholomorphic maps. This is equivalent to requiring that the transition functions :t_ : U\cap V \to \mathrm_k(\mathbf) are holomorphic maps. The holomorphic structure on the tangent bundle of a complex manifold is guaranteed by t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]