Cislunar Aerodynamics
   HOME

TheInfoList



OR:

Outer space, commonly shortened to space, is the expanse that exists beyond Earth and its atmosphere and between
celestial bodies An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists in the observable universe. In astronomy, the terms ''object'' and ''body'' are often us ...
. Outer space is not completely empty—it is a near-perfect vacuum containing a low density of particles, predominantly a
plasma Plasma or plasm may refer to: Science * Plasma (physics), one of the four fundamental states of matter * Plasma (mineral), a green translucent silica mineral * Quark–gluon plasma, a state of matter in quantum chromodynamics Biology * Blood pla ...
of hydrogen and helium, as well as electromagnetic radiation,
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
s, neutrinos, dust, and cosmic rays. The baseline temperature of outer space, as set by the background radiation from the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, is . The plasma between galaxies is thought to account for about half of the baryonic (ordinary) matter in the universe, having a
number density The number density (symbol: ''n'' or ''ρ''N) is an intensive quantity used to describe the degree of concentration of countable objects (particles, molecules, phonons, cells, galaxies, etc.) in physical space: three-dimensional volumetric number ...
of less than one
hydrogen atom A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen consti ...
per
cubic metre The cubic metre (in Commonwealth English and international spelling as used by the International Bureau of Weights and Measures) or cubic meter (in American English) is the unit of volume in the International System of Units (SI). Its symbol is m ...
and a kinetic temperature of millions of kelvins. Local concentrations of matter have condensed into
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s and
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. ...
. Studies indicate that 90% of the mass in most galaxies is in an unknown form, called dark matter, which interacts with other matter through
gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
al but not electromagnetic forces. Observations suggest that the majority of the mass-energy in the observable universe is '' dark energy'', a type of vacuum energy that is poorly understood. Intergalactic space takes up most of the volume of the universe, but even galaxies and
star system A star system or stellar system is a small number of stars that orbit each other, bound by gravitational attraction. A large group of stars bound by gravitation is generally called a '' star cluster'' or '' galaxy'', although, broadly speak ...
s consist almost entirely of empty space. Outer space does not begin at a definite altitude above the Earth's surface. The
Kármán line The Kármán line (or von Kármán line ) is an attempt to define a boundary between Earth's atmosphere and outer space, and offers a specific definition set by the Fédération aéronautique internationale (FAI), an international record-keeping ...
, an altitude of above sea level, is conventionally used as the start of outer space in space treaties and for aerospace records keeping. Certain portions of the upper
stratosphere The stratosphere () is the second layer of the atmosphere of the Earth, located above the troposphere and below the mesosphere. The stratosphere is an atmospheric layer composed of stratified temperature layers, with the warm layers of air ...
and the
mesosphere The mesosphere (; ) is the third layer of the atmosphere, directly above the stratosphere and directly below the thermosphere. In the mesosphere, temperature decreases as altitude increases. This characteristic is used to define its limits: it ...
are also sometimes referred to as "near space". The framework for international space law was established by the Outer Space Treaty, which entered into force on 10 October 1967. This treaty precludes any claims of national sovereignty and permits all states to freely explore outer space. Despite the drafting of UN resolutions for the peaceful uses of outer space, anti-satellite weapons have been tested in Earth orbit. Humans began the physical exploration of space during the 20th century with the advent of high-altitude balloon flights. This was followed by crewed rocket flights and, then, crewed Earth orbit, first achieved by Yuri Gagarin of the Soviet Union in 1961. Due to the high cost of getting into space, human spaceflight has been limited to low Earth orbit and the Moon. On the other hand, uncrewed spacecraft have reached all of the known planets in the Solar System. Outer space represents a challenging environment for human exploration because of the hazards of vacuum and
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
.
Microgravity The term micro-g environment (also μg, often referred to by the term microgravity) is more or less synonymous with the terms ''weightlessness'' and ''zero-g'', but emphasising that g-forces are never exactly zero—just very small (on the I ...
also has a negative effect on human physiology that causes both
muscle atrophy Muscle atrophy is the loss of skeletal muscle mass. It can be caused by immobility, aging, malnutrition, medications, or a wide range of injuries or diseases that impact the musculoskeletal or nervous system. Muscle atrophy leads to muscle weakness ...
and
bone loss Osteoporosis is a systemic skeletal disorder characterized by low bone mass, micro-architectural deterioration of bone tissue leading to bone fragility, and consequent increase in fracture risk. It is the most common reason for a broken bone ...
. In addition to these health and environmental issues, the economic cost of putting objects, including humans, into space is very high.


Formation and state

The size of the whole universe is unknown, and it might be infinite in extent. According to the Big Bang theory, the very early Universe was an extremely hot and dense state about 13.8 billion years ago which rapidly expanded. About 380,000 years later the Universe had cooled sufficiently to allow protons and electrons to combine and form hydrogen—the so-called recombination epoch. When this happened, matter and energy became decoupled, allowing photons to travel freely through the continually expanding space. Matter that remained following the initial expansion has since undergone gravitational collapse to create
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s,
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. ...
and other
astronomical object An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists in the observable universe. In astronomy, the terms ''object'' and ''body'' are often us ...
s, leaving behind a deep vacuum that forms what is now called outer space. As light has a finite velocity, this theory also constrains the size of the directly observable universe. The present day
shape of the universe The shape of the universe, in physical cosmology, is the local and global geometry of the universe. The local features of the geometry of the universe are primarily described by its curvature, whereas the topology of the universe describes gen ...
has been determined from measurements of the cosmic microwave background using satellites like the
Wilkinson Microwave Anisotropy Probe The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe (MAP and Explorer 80), was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic mic ...
. These observations indicate that the
spatial geometry Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position (geometry), position of an element (i.e., Point (m ...
of the observable universe is " flat", meaning that photons on parallel paths at one point remain parallel as they travel through space to the limit of the observable universe, except for local gravity. The flat Universe, combined with the measured mass density of the Universe and the accelerating
expansion of the Universe The expansion of the universe is the increase in distance between any two given gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion whereby the scale of space itself changes. The universe does not exp ...
, indicates that space has a non-zero vacuum energy, which is called dark energy. Estimates put the average energy density of the present day Universe at the equivalent of 5.9 protons per cubic meter, including dark energy, dark matter, and baryonic matter (ordinary matter composed of atoms). The atoms account for only 4.6% of the total energy density, or a density of one proton per four cubic meters. The density of the Universe is clearly not uniform; it ranges from relatively high density in galaxies—including very high density in structures within galaxies, such as planets, stars, and
black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
s—to conditions in vast
voids Void may refer to: Science, engineering, and technology * Void (astronomy), the spaces between galaxy filaments that contain no galaxies * Void (composites), a pore that remains unoccupied in a composite material * Void, synonym for vacuum, a s ...
that have much lower density, at least in terms of visible matter. Unlike matter and dark matter, dark energy seems not to be concentrated in galaxies: although dark energy may account for a majority of the mass-energy in the Universe, dark energy's influence is 5 orders of magnitude smaller than the influence of gravity from matter and dark matter within the Milky Way.


Environment

Outer space is the closest known approximation to a
perfect vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
. It has effectively no friction, allowing stars,
planets A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a young ...
, and moons to move freely along their ideal orbits, following the initial formation stage. The deep vacuum of intergalactic space is not devoid of matter, as it contains a few hydrogen atoms per cubic meter. By comparison, the air humans breathe contains about 1025 molecules per cubic meter. The low density of matter in outer space means that electromagnetic radiation can travel great distances without being scattered: the mean free path of a photon in intergalactic space is about 1023 km, or 10 billion light years. In spite of this, extinction, which is the
absorption Absorption may refer to: Chemistry and biology * Absorption (biology), digestion **Absorption (small intestine) *Absorption (chemistry), diffusion of particles of gas or liquid into liquid or solid materials *Absorption (skin), a route by which ...
and
scattering Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including ...
of photons by dust and gas, is an important factor in galactic and intergalactic astronomy. Stars, planets, and moons retain their
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A s ...
s by gravitational attraction. Atmospheres have no clearly delineated upper boundary: the density of atmospheric gas gradually decreases with distance from the object until it becomes indistinguishable from outer space. The Earth's atmospheric pressure drops to about Pa at of altitude, compared to 100,000 Pa for the International Union of Pure and Applied Chemistry (IUPAC) definition of
standard pressure Standard temperature and pressure (STP) are standard sets of conditions for experimental measurements to be established to allow comparisons to be made between different sets of data. The most used standards are those of the International Union o ...
. Above this altitude, isotropic gas pressure rapidly becomes insignificant when compared to radiation pressure from the Sun and the dynamic pressure of the solar wind. The thermosphere in this range has large gradients of pressure, temperature and composition, and varies greatly due to space weather. The temperature of outer space is measured in terms of the
kinetic Kinetic (Ancient Greek: κίνησις “kinesis”, movement or to move) may refer to: * Kinetic theory of gases, Kinetic theory, describing a gas as particles in random motion * Kinetic energy, the energy of an object that it possesses due to i ...
activity of the gas, as it is on Earth. The radiation of outer space has a different temperature than the kinetic temperature of the gas, meaning that the gas and radiation are not in thermodynamic equilibrium. All of the observable universe is filled with photons that were created during the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, which is known as the cosmic microwave background radiation (CMB). (There is quite likely a correspondingly large number of neutrinos called the cosmic neutrino background.) The current black body temperature of the background radiation is about . The gas temperatures in outer space can vary widely. For example, the temperature in the Boomerang Nebula is 1 K, while the solar corona reaches temperatures over 1.2–2.6 million K. Magnetic fields have been detected in the space around just about every class of celestial object. Star formation in spiral galaxies can generate small-scale dynamos, creating turbulent magnetic field strengths of around 5–10 μ G. The Davis–Greenstein effect causes elongated dust grains to align themselves with a galaxy's magnetic field, resulting in weak optical
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
. This has been used to show ordered magnetic fields exist in several nearby galaxies. Magneto-hydrodynamic processes in active elliptical galaxies produce their characteristic jets and
radio lobe A radio galaxy is a galaxy with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its active galactic nucleus. They have luminosities up to 1039  W at radio wa ...
s. Non-thermal
radio sources An astronomical radio source is an object in outer space that emits strong radio waves. Radio emission comes from a wide variety of sources. Such objects are among the most extreme and energetic physical processes in the universe. History In 193 ...
have been detected even among the most distant, high-z sources, indicating the presence of magnetic fields. Outside a protective atmosphere and magnetic field, there are few obstacles to the passage through space of energetic
subatomic particle In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a pr ...
s known as cosmic rays. These particles have energies ranging from about 106  eV up to an extreme 1020 eV of ultra-high-energy cosmic rays. The peak flux of cosmic rays occurs at energies of about 109 eV, with approximately 87% protons, 12% helium nuclei and 1% heavier nuclei. In the high energy range, the flux of electrons is only about 1% of that of protons. Cosmic rays can damage electronic components and pose a
health threat A health risk assessment (also referred to as a health risk appraisal and health & well-being assessment) is a questionnaire about a person's medical history, demographic characteristics and lifestyle. It is one of the most widely used screening t ...
to space travelers. According to astronauts, like Don Pettit, space has a burned/metallic odor that clings to their suits and equipment, similar to the scent of an arc welding torch.


Effect on biology and human bodies

Despite the harsh environment, several life forms have been found that can withstand extreme space conditions for extended periods. Species of lichen carried on the ESA BIOPAN facility survived exposure for ten days in 2007. Seeds of ''
Arabidopsis thaliana ''Arabidopsis thaliana'', the thale cress, mouse-ear cress or arabidopsis, is a small flowering plant native to Eurasia and Africa. ''A. thaliana'' is considered a weed; it is found along the shoulders of roads and in disturbed land. A winter a ...
'' and '' Nicotiana tabacum'' germinated after being exposed to space for 1.5 years. A strain of '' Bacillus subtilis'' has survived 559 days when exposed to low Earth orbit or a simulated martian environment. The
lithopanspermia Panspermia () is the hypothesis, first proposed in the 5th century BCE by the Greek philosopher Anaxagoras, that life exists throughout the Universe, distributed by space dust, meteoroids, asteroids, comets, and planetoids, as well as by spacecraf ...
hypothesis suggests that rocks ejected into outer space from life-harboring planets may successfully transport life forms to another habitable world. A conjecture is that just such a scenario occurred early in the history of the Solar System, with potentially microorganism-bearing rocks being exchanged between Venus, Earth, and Mars. Even at relatively low altitudes in the Earth's atmosphere, conditions are hostile to the human body. The altitude where atmospheric pressure matches the vapor pressure of water at the temperature of the human body is called the
Armstrong line The Armstrong limit or Armstrong's line is a measure of altitude above which atmospheric pressure is sufficiently low that water boils at the normal temperature of the human body. Exposure to pressure below this limit results in a rapid loss of ...
, named after American physician Harry G. Armstrong. It is located at an altitude of around . At or above the Armstrong line, fluids in the throat and lungs boil away. More specifically, exposed bodily liquids such as saliva, tears, and liquids in the lungs boil away. Hence, at this altitude, human survival requires a pressure suit, or a pressurized capsule. Out in space, sudden exposure of an unprotected human to very low pressure, such as during a rapid decompression, can cause pulmonary barotrauma—a rupture of the lungs, due to the large pressure differential between inside and outside the chest. Even if the subject's airway is fully open, the flow of air through the windpipe may be too slow to prevent the rupture. Rapid decompression can rupture eardrums and sinuses, bruising and blood seep can occur in soft tissues, and shock can cause an increase in oxygen consumption that leads to
hypoxia Hypoxia means a lower than normal level of oxygen, and may refer to: Reduced or insufficient oxygen * Hypoxia (environmental), abnormally low oxygen content of the specific environment * Hypoxia (medical), abnormally low level of oxygen in the tis ...
. As a consequence of rapid decompression, oxygen dissolved in the blood empties into the lungs to try to equalize the
partial pressure In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. The total pressure of an ideal gas ...
gradient. Once the deoxygenated blood arrives at the brain, humans lose consciousness after a few seconds and die of hypoxia within minutes. Blood and other body fluids boil when the pressure drops below 6.3 kPa, and this condition is called ebullism. The steam may bloat the body to twice its normal size and slow circulation, but tissues are elastic and porous enough to prevent rupture. Ebullism is slowed by the pressure containment of blood vessels, so some blood remains liquid. Swelling and ebullism can be reduced by containment in a pressure suit. The Crew Altitude Protection Suit (CAPS), a fitted elastic garment designed in the 1960s for astronauts, prevents ebullism at pressures as low as 2 kPa. Supplemental oxygen is needed at to provide enough oxygen for breathing and to prevent water loss, while above pressure suits are essential to prevent ebullism. Most space suits use around 30–39 kPa of pure oxygen, about the same as on the Earth's surface. This pressure is high enough to prevent ebullism, but evaporation of nitrogen dissolved in the blood could still cause decompression sickness and gas embolisms if not managed. Humans evolved for life in Earth gravity, and exposure to weightlessness has been shown to have deleterious effects on human health. Initially, more than 50% of astronauts experience
space motion sickness Space adaptation syndrome (SAS) or space sickness is a condition experienced by as many as half of all space travelers during their adaptation to weightlessness once in orbit. It is the opposite of terrestrial motion sickness since it occurs when ...
. This can cause nausea and vomiting, vertigo, headaches, lethargy, and overall malaise. The duration of space sickness varies, but it typically lasts for 1–3 days, after which the body adjusts to the new environment. Longer-term exposure to weightlessness results in
muscle atrophy Muscle atrophy is the loss of skeletal muscle mass. It can be caused by immobility, aging, malnutrition, medications, or a wide range of injuries or diseases that impact the musculoskeletal or nervous system. Muscle atrophy leads to muscle weakness ...
and deterioration of the
skeleton A skeleton is the structural frame that supports the body of an animal. There are several types of skeletons, including the exoskeleton, which is the stable outer shell of an organism, the endoskeleton, which forms the support structure inside ...
, or spaceflight osteopenia. These effects can be minimized through a regimen of exercise. Other effects include fluid redistribution, slowing of the
cardiovascular system The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, tha ...
, decreased production of red blood cells, balance disorders, and a weakening of the immune system. Lesser symptoms include loss of body mass, nasal congestion, sleep disturbance, and puffiness of the face. During long-duration space travel, radiation can pose an
acute health hazard In epidemiology, a risk factor or determinant is a variable associated with an increased risk of disease or infection. Due to a lack of harmonization across disciplines, determinant, in its more widely accepted wikt:determine, scientific meanin ...
. Exposure to high-energy, ionizing cosmic rays can result in fatigue, nausea, vomiting, as well as damage to the immune system and changes to the
white blood cell White blood cells, also called leukocytes or leucocytes, are the cell (biology), cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. All white blood cells are produced and de ...
count. Over longer durations, symptoms include an increased risk of cancer, plus damage to the eyes, nervous system, lungs and the
gastrointestinal tract The gastrointestinal tract (GI tract, digestive tract, alimentary canal) is the tract or passageway of the digestive system that leads from the mouth to the anus. The GI tract contains all the major organ (biology), organs of the digestive syste ...
. On a round-trip Mars mission lasting three years, a large fraction of the cells in an astronaut's body would be traversed and potentially damaged by high energy nuclei. The energy of such particles is significantly diminished by the shielding provided by the walls of a spacecraft and can be further diminished by water containers and other barriers. The impact of the cosmic rays upon the shielding produces additional radiation that can affect the crew. Further research is needed to assess the radiation hazards and determine suitable countermeasures.


Boundary

There is no clear boundary between Earth's atmosphere and space, as the density of the atmosphere gradually decreases as the altitude increases. There are several standard boundary designations, namely: * The
Fédération Aéronautique Internationale The (; FAI; en, World Air Sports Federation) is the world governing body for air sports, and also stewards definitions regarding human spaceflight. It was founded on 14 October 1905, and is headquartered in Lausanne, Switzerland. It maintai ...
has established the
Kármán line The Kármán line (or von Kármán line ) is an attempt to define a boundary between Earth's atmosphere and outer space, and offers a specific definition set by the Fédération aéronautique internationale (FAI), an international record-keeping ...
at an altitude of as a working definition for the boundary between aeronautics and astronautics. This is used because at an altitude of about , as Theodore von Kármán calculated, a vehicle would have to travel faster than orbital velocity to derive sufficient aerodynamic lift from the atmosphere to support itself. * Up until 2021, the United States designated people who travel above an altitude of as
astronaut An astronaut (from the Ancient Greek (), meaning 'star', and (), meaning 'sailor') is a person trained, equipped, and deployed by a human spaceflight program to serve as a commander or crew member aboard a spacecraft. Although generally r ...
s. Astronaut wings are now only awarded to spacecraft crew members that "demonstrated activities during flight that were essential to public safety, or contributed to human space flight safety". * NASA's Space Shuttle used , or , as its re-entry altitude (termed the Entry Interface), which roughly marks the boundary where atmospheric drag becomes noticeable, thus beginning the process of switching from steering with thrusters to maneuvering with aerodynamic control surfaces. In 2009, scientists reported detailed measurements with a Supra-Thermal Ion Imager (an instrument that measures the direction and speed of ions), which allowed them to establish a boundary at above Earth. The boundary represents the midpoint of a gradual transition over tens of kilometers from the relatively gentle winds of the Earth's atmosphere to the more violent flows of charged particles in space, which can reach speeds well over .


Legal status

The Outer Space Treaty provides the basic framework for international space law. It covers the legal use of outer space by nation states, and includes in its definition of ''outer space'', the Moon, and other celestial bodies. The treaty states that outer space is free for all nation states to explore and is not subject to claims of national sovereignty, calling outer space the "province of all mankind". This status as a common heritage of mankind has been used, though not without opposition, to enforce the right to access and shared use of outer space for all nations equally, particularly non-spacefaring nations. It also prohibits the development of nuclear weapons in outer space. The treaty was passed by the United Nations General Assembly in 1963 and signed in 1967 by the USSR, the United States of America and the United Kingdom. As of 2017, 105 state parties have either ratified or acceded to the treaty. An additional 25 states signed the treaty, without ratifying it. Since 1958, outer space has been the subject of multiple United Nations resolutions. Of these, more than 50 have been concerning the international co-operation in the peaceful uses of outer space and preventing an arms race in space. Four additional space law treaties have been negotiated and drafted by the UN's Committee on the Peaceful Uses of Outer Space. Still, there remains no legal prohibition against deploying conventional weapons in space, and anti-satellite weapons have been successfully tested by the US, USSR, China, and in 2019, India. The 1979 Moon Treaty turned the jurisdiction of all heavenly bodies (including the orbits around such bodies) over to the international community. The treaty has not been ratified by any nation that currently practices human spaceflight. In 1976, eight equatorial states ( Ecuador,
Colombia Colombia (, ; ), officially the Republic of Colombia, is a country in South America with insular regions in North America—near Nicaragua's Caribbean coast—as well as in the Pacific Ocean. The Colombian mainland is bordered by the Car ...
, Brazil,
Congo Congo or The Congo may refer to either of two countries that border the Congo River in central Africa: * Democratic Republic of the Congo, the larger country to the southeast, capital Kinshasa, formerly known as Zaire, sometimes referred to a ...
, Zaire, Uganda, Kenya, and Indonesia) met in
Bogotá Bogotá (, also , , ), officially Bogotá, Distrito Capital, abbreviated Bogotá, D.C., and formerly known as Santa Fe de Bogotá (; ) during the Spanish period and between 1991 and 2000, is the capital city of Colombia, and one of the larges ...
, Colombia. With their " Declaration of the First Meeting of Equatorial Countries", or "the Bogotá Declaration", they claimed control of the segment of the geosynchronous orbital path corresponding to each country. These claims are not internationally accepted.


Earth orbit

A spacecraft enters orbit when its
centripetal A centripetal force (from Latin ''centrum'', "center" and ''petere'', "to seek") is a force that makes a body follow a curved trajectory, path. Its direction is always orthogonality, orthogonal to the motion of the body and towards the fixed po ...
acceleration due to gravity is less than or equal to the
centrifugal Centrifugal (a key concept in rotating systems) may refer to: *Centrifugal casting (industrial), Centrifugal casting (silversmithing), and Spin casting (centrifugal rubber mold casting), forms of centrifigual casting *Centrifugal clutch *Centrifug ...
acceleration due to the horizontal component of its velocity. For a low Earth orbit, this velocity is about ; by contrast, the fastest piloted airplane speed ever achieved (excluding speeds achieved by deorbiting spacecraft) was in 1967 by the
North American X-15 The North American X-15 is a hypersonic rocket-powered aircraft. It was operated by the United States Air Force and the National Aeronautics and Space Administration as part of the X-plane series of experimental aircraft. The X-15 set speed an ...
. To achieve an orbit, a spacecraft must travel faster than a sub-orbital spaceflight. The energy required to reach Earth orbital velocity at an altitude of is about 36  MJ/kg, which is six times the energy needed merely to climb to the corresponding altitude. Spacecraft with a perigee below about are subject to drag from the Earth's atmosphere, which decreases the orbital altitude. The rate of orbital decay depends on the satellite's cross-sectional area and mass, as well as variations in the air density of the upper atmosphere. Below about , decay becomes more rapid with lifetimes measured in days. Once a satellite descends to , it has only hours before it vaporizes in the atmosphere. The escape velocity required to pull free of Earth's gravitational field altogether and move into interplanetary space is about .


Regions

Space is a partial vacuum: its different regions are defined by the various magnetic fields and "winds" that dominate within them, and extend to the point at which those fields give way to those beyond. Geospace extends from Earth's atmosphere to the outer reaches of Earth's magnetic field, whereupon it gives way to the solar wind of interplanetary space. Interplanetary space extends to the heliopause, whereupon the solar wind gives way to the magnetic fields of the
interstellar medium In astronomy, the interstellar medium is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstella ...
. Interstellar space then continues to the outer fringes of the galaxy, where it fades into the intergalactic void.


Regions near the Earth

Near-Earth space is the region of outer space above the Kármán line, from low Earth orbits out to
geostationary orbit A geostationary orbit, also referred to as a geosynchronous equatorial orbit''Geostationary orbit'' and ''Geosynchronous (equatorial) orbit'' are used somewhat interchangeably in sources. (GEO), is a circular geosynchronous orbit in altitud ...
s. This region includes the major orbits for artificial satellites and is the site of most of humanity's space activity. The region has seen high levels of space pollution, mainly in the form of space debris, threatening any space activity in this region. Geospace is a region of outer space near Earth that includes the upper atmosphere and
magnetosphere In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior dynam ...
. The Van Allen radiation belts lie within the geospace. The outer boundary of geospace is the magnetopause, which forms an interface between the Earth's magnetosphere and the solar wind. The inner boundary is the
ionosphere The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an ...
. The variable space-weather conditions of geospace are affected by the behavior of the Sun and the solar wind; the subject of geospace is interlinked with heliophysics—the study of the Sun and its impact on the planets of the Solar System. The day-side magnetopause is compressed by solar-wind pressure—the subsolar distance from the center of the Earth is typically 10 Earth radii. On the night side, the solar wind stretches the magnetosphere to form a magnetotail that sometimes extends out to more than 100–200 Earth radii. For roughly four days of each month, the lunar surface is shielded from the solar wind as the Moon passes through the magnetotail. Geospace is populated by electrically charged particles at very low densities, the motions of which are controlled by the Earth's magnetic field. These plasmas form a medium from which storm-like disturbances powered by the solar wind can drive electrical currents into the Earth's upper atmosphere. Geomagnetic storms can disturb two regions of geospace, the radiation belts and the ionosphere. These storms increase fluxes of energetic electrons that can permanently damage satellite electronics, interfering with shortwave radio communication and
GPS The Global Positioning System (GPS), originally Navstar GPS, is a Radionavigation-satellite service, satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of t ...
location and timing. Magnetic storms can also be a hazard to astronauts, even in low Earth orbit. They also create
aurorae An aurora (plural: auroras or aurorae), also commonly known as the polar lights, is a natural light display in Earth's sky, predominantly seen in polar regions of Earth, high-latitude regions (around the Arctic and Antarctic). Auroras display ...
seen at high latitudes in an oval surrounding the
geomagnetic pole The geomagnetic poles are antipodal points where the axis of a best-fitting dipole intersects the surface of Earth. This ''theoretical'' dipole is equivalent to a powerful bar magnet at the center of Earth, and comes closer than any other poin ...
s. Although it meets the definition of outer space, the atmospheric density within the first few hundred kilometers above the Kármán line is still sufficient to produce significant
drag Drag or The Drag may refer to: Places * Drag, Norway, a village in Tysfjord municipality, Nordland, Norway * ''Drág'', the Hungarian name for Dragu Commune in Sălaj County, Romania * Drag (Austin, Texas), the portion of Guadalupe Street adj ...
on satellites. This region contains material left over from previous crewed and uncrewed launches that are a potential hazard to spacecraft. Some of this debris re-enters Earth's atmosphere periodically. Translunar space is the region of lunar transfer orbits, between the Moon and Earth. Cislunar space is a region outside of Earth that includes
lunar orbit In astronomy, lunar orbit (also known as a selenocentric orbit) is the orbit of an object around the Moon. As used in the space program, this refers not to the orbit of the Moon about the Earth, but to orbits by spacecraft around the Moon. The ...
, the Moon's orbital space around Earth and the
Lagrange point In celestial mechanics, the Lagrange points (; also Lagrangian points or libration points) are points of equilibrium for small-mass objects under the influence of two massive orbiting bodies. Mathematically, this involves the solution of th ...
s. xGeo space is a concept used by the US to refer to space of
High Earth Orbit A high Earth orbit is a geocentric orbit with an altitude entirely above that of a geosynchronous orbit (). The orbital periods of such orbits are greater than 24 hours, therefore satellites in such orbits have an apparent retrograde motion ...
s, ranging from beyond
geosynchronous orbit A geosynchronous orbit (sometimes abbreviated GSO) is an Earth-centered orbit with an orbital period that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds (one sidereal day). The synchronization of rotation and orbital ...
(GEO) at approximately , out to the L2 Earth-Moon Lagrange point at . This is located beyond the orbit of the Moon and therefore includes cislunar space. The region where Earth's gravity well remains dominant against gravitational
perturbations Perturbation or perturb may refer to: * Perturbation theory, mathematical methods that give approximate solutions to problems that cannot be solved exactly * Perturbation (geology), changes in the nature of alluvial deposits over time * Perturbatio ...
from the Sun is the planet's Hill sphere. This includes all space from the Earth to a distance of roughly 1% of the mean distance from Earth to the Sun, or . Beyond Earth's Hill sphere extends along
Earth's orbit Earth orbits the Sun at an average distance of 149.60 million km (92.96 million mi) in a counterclockwise direction as viewed from above the Northern Hemisphere. One complete orbit takes  days (1 sidereal year), during which time Earth ...
al path its orbital and
co-orbital In astronomy, a co-orbital configuration is a configuration of two or more astronomical objects (such as asteroids, moons, or planets) orbiting at the same, or very similar, distance from their primary, i.e. they are in a 1:1 mean-motion resonan ...
space. This space is co-populated by groups of co-orbital Near-Earth Objects (NEOs), such as horseshoe librators and Earth trojans, with some NEOs at times becoming temporary satellites and quasi-moons to Earth. Deep space is defined by the United States government and others as any region beyond cislunar space. The International Telecommunication Union responsible for radio communication, including with satellites, defines the beginning of deep space at , which is about five times the Moon's orbital distance.


Interplanetary space

Interplanetary space is defined by the solar wind, a continuous stream of charged particles emanating from the Sun that creates a very tenuous atmosphere (the heliosphere) for billions of kilometers into space. This wind has a particle density of 5–10
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s/cm3 and is moving at a velocity of . Interplanetary space extends out to the heliopause where the influence of the galactic environment starts to dominate over the magnetic field and particle flux from the Sun. The distance and strength of the heliopause varies depending on the activity level of the solar wind. The heliopause in turn deflects away low-energy galactic cosmic rays, with this modulation effect peaking during solar maximum. The volume of interplanetary space is a nearly total vacuum, with a mean free path of about one astronomical unit at the orbital distance of the Earth. This space is not completely empty, and is sparsely filled with cosmic rays, which include ionized
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in ...
and various subatomic particles. There is also gas,
plasma Plasma or plasm may refer to: Science * Plasma (physics), one of the four fundamental states of matter * Plasma (mineral), a green translucent silica mineral * Quark–gluon plasma, a state of matter in quantum chromodynamics Biology * Blood pla ...
and dust, small meteors, and several dozen types of
organic Organic may refer to: * Organic, of or relating to an organism, a living entity * Organic, of or relating to an anatomical organ Chemistry * Organic matter, matter that has come from a once-living organism, is capable of decay or is the product ...
molecules discovered to date by microwave spectroscopy. A cloud of interplanetary dust is visible at night as a faint band called the zodiacal light. Interplanetary space contains the magnetic field generated by the Sun. There are also magnetospheres generated by planets such as Jupiter, Saturn, Mercury and the Earth that have their own magnetic fields. These are shaped by the influence of the solar wind into the approximation of a teardrop shape, with the long tail extending outward behind the planet. These magnetic fields can trap particles from the solar wind and other sources, creating belts of charged particles such as the Van Allen radiation belts. Planets without magnetic fields, such as Mars, have their atmospheres gradually eroded by the solar wind.


Interstellar space

Interstellar space is the physical space within a galaxy beyond the influence each star has upon the encompassed plasma. The contents of interstellar space are called the interstellar medium. Approximately 70% of the mass of the interstellar medium consists of lone hydrogen atoms; most of the remainder consists of helium atoms. This is enriched with trace amounts of heavier atoms formed through
stellar nucleosynthesis Stellar nucleosynthesis is the creation (nucleosynthesis) of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
. These atoms are ejected into the interstellar medium by
stellar wind A stellar wind is a flow of gas ejected from the upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spherically symmetric. D ...
s or when evolved stars begin to shed their outer envelopes such as during the formation of a planetary nebula. The cataclysmic explosion of a
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
generates an expanding shock wave consisting of ejected materials that further enrich the medium. The density of matter in the interstellar medium can vary considerably: the average is around 106 particles per m3, but cold molecular clouds can hold 108–1012 per m3. A number of molecules exist in interstellar space, as can tiny 0.1 
μm The micrometre ( international spelling as used by the International Bureau of Weights and Measures; SI symbol: μm) or micrometer (American spelling), also commonly known as a micron, is a unit of length in the International System of Unit ...
dust particles. The tally of molecules discovered through radio astronomy is steadily increasing at the rate of about four new species per year. Large regions of higher density matter known as molecular clouds allow chemical reactions to occur, including the formation of organic polyatomic species. Much of this chemistry is driven by collisions. Energetic cosmic rays penetrate the cold, dense clouds and ionize hydrogen and helium, resulting, for example, in the trihydrogen cation. An ionized helium atom can then split relatively abundant carbon monoxide to produce ionized carbon, which in turn can lead to organic chemical reactions. The local interstellar medium is a region of space within 100  parsecs (pc) of the Sun, which is of interest both for its proximity and for its interaction with the Solar System. This volume nearly coincides with a region of space known as the Local Bubble, which is characterized by a lack of dense, cold clouds. It forms a cavity in the Orion Arm of the Milky Way galaxy, with dense molecular clouds lying along the borders, such as those in the
constellation A constellation is an area on the celestial sphere in which a group of visible stars forms Asterism (astronomy), a perceived pattern or outline, typically representing an animal, mythological subject, or inanimate object. The origins of the e ...
s of Ophiuchus and Taurus. (The actual distance to the border of this cavity varies from 60 to 250 pc or more.) This volume contains about 104–105 stars and the local interstellar gas counterbalances the astrospheres that surround these stars, with the volume of each sphere varying depending on the local density of the interstellar medium. The Local Bubble contains dozens of warm interstellar clouds with temperatures of up to 7,000 K and radii of 0.5–5 pc. When stars are moving at sufficiently high
peculiar velocities Peculiar motion or peculiar velocity refers to the velocity of an object relative to a ''rest frame'' — usually a frame in which the average velocity of some objects is zero. Galactic astronomy In galactic astronomy, peculiar motion refers to ...
, their astrospheres can generate bow shocks as they collide with the interstellar medium. For decades it was assumed that the Sun had a bow shock. In 2012, data from Interstellar Boundary Explorer (IBEX) and NASA's
Voyager Voyager may refer to: Computing and communications * LG Voyager, a mobile phone model manufactured by LG Electronics * NCR Voyager, a computer platform produced by NCR Corporation * Voyager (computer worm), a computer worm affecting Oracle ...
probes showed that the Sun's bow shock does not exist. Instead, these authors argue that a
subsonic Subsonic may refer to: Motion through a medium * Any speed lower than the speed of sound within a sound-propagating medium * Subsonic aircraft, a flying machine that flies at air speeds lower than the speed of sound * Subsonic ammunition, a type o ...
bow wave defines the transition from the solar wind flow to the interstellar medium. A bow shock is the third boundary of an astrosphere after the termination shock and the astropause (called the heliopause in the Solar System).


Intergalactic space

Intergalactic space is the physical space between galaxies. Studies of the large-scale distribution of galaxies show that the Universe has a foam-like structure, with groups and clusters of galaxies lying along filaments that occupy about a tenth of the total space. The remainder forms huge voids that are mostly empty of galaxies. Typically, a void spans a distance of 7–30 megaparsecs. Surrounding and stretching between galaxies, there is a rarefied
plasma Plasma or plasm may refer to: Science * Plasma (physics), one of the four fundamental states of matter * Plasma (mineral), a green translucent silica mineral * Quark–gluon plasma, a state of matter in quantum chromodynamics Biology * Blood pla ...
that is organized in a galactic filamentary structure. This material is called the intergalactic medium (IGM). The density of the IGM is 5–200 times the average density of the Universe. It consists mostly of ionized hydrogen; i.e. a plasma consisting of equal numbers of electrons and protons. As gas falls into the intergalactic medium from the voids, it heats up to temperatures of 105 K to 107 K, which is high enough so that collisions between atoms have enough energy to cause the bound electrons to escape from the hydrogen nuclei; this is why the IGM is ionized. At these temperatures, it is called the warm–hot intergalactic medium (WHIM). (Although the plasma is very hot by terrestrial standards, 105 K is often called "warm" in astrophysics.) Computer simulations and observations indicate that up to half of the atomic matter in the Universe might exist in this warm–hot, rarefied state. When gas falls from the filamentary structures of the WHIM into the galaxy clusters at the intersections of the cosmic filaments, it can heat up even more, reaching temperatures of 108 K and above in the so-called intracluster medium (ICM).


History of discovery

In 350 BCE, Greek philosopher Aristotle suggested that ''nature abhors a vacuum'', a principle that became known as the ''
horror vacui Horror vacui can refer to: * Horror vacui (art), a concept in art approximately translated from Latin ''fear of empty spaces'' *Horror vacui (physics), a physical postulate * ''Horror Vacui'' (film), a 1984 German satirical film * ''Horror Vacui' ...
''. This concept built upon a 5th-century BCE ontological argument by the Greek philosopher
Parmenides Parmenides of Elea (; grc-gre, Παρμενίδης ὁ Ἐλεάτης; ) was a pre-Socratic Greek philosopher from Elea in Magna Graecia. Parmenides was born in the Greek colony of Elea, from a wealthy and illustrious family. His dates a ...
, who denied the possible existence of a void in space. Based on this idea that a vacuum could not exist, in the West it was widely held for many centuries that space could not be empty. As late as the 17th century, the French philosopher René Descartes argued that the entirety of space must be filled. In
ancient China The earliest known written records of the history of China date from as early as 1250 BC, from the Shang dynasty (c. 1600–1046 BC), during the reign of king Wu Ding. Ancient historical texts such as the '' Book of Documents'' (early chapte ...
, the 2nd-century astronomer
Zhang Heng Zhang Heng (; AD 78–139), formerly romanized as Chang Heng, was a Chinese polymathic scientist and statesman who lived during the Han dynasty. Educated in the capital cities of Luoyang and Chang'an, he achieved success as an astronomer, ma ...
became convinced that space must be infinite, extending well beyond the mechanism that supported the Sun and the stars. The surviving books of the Hsüan Yeh school said that the heavens were boundless, "empty and void of substance". Likewise, the "sun, moon, and the company of stars float in the empty space, moving or standing still". The Italian scientist Galileo Galilei knew that air had mass and so was subject to gravity. In 1640, he demonstrated that an established force resisted the formation of a vacuum. It would remain for his pupil Evangelista Torricelli to create an apparatus that would produce a partial vacuum in 1643. This experiment resulted in the first mercury barometer and created a scientific sensation in Europe. The French mathematician
Blaise Pascal Blaise Pascal ( , , ; ; 19 June 1623 – 19 August 1662) was a French mathematician, physicist, inventor, philosopher, and Catholic Church, Catholic writer. He was a child prodigy who was educated by his father, a tax collector in Rouen. Pa ...
reasoned that if the column of mercury was supported by air, then the column ought to be shorter at higher altitude where the air pressure is lower. In 1648, his brother-in-law, Florin Périer, repeated the experiment on the Puy de Dôme mountain in central France and found that the column was shorter by three inches. This decrease in pressure was further demonstrated by carrying a half-full balloon up a mountain and watching it gradually expand, then contract upon descent. In 1650, German scientist
Otto von Guericke Otto von Guericke ( , , ; spelled Gericke until 1666; November 20, 1602 – May 11, 1686 ; November 30, 1602 – May 21, 1686 ) was a German scientist, inventor, and politician. His pioneering scientific work, the development of experimental me ...
constructed the first vacuum pump: a device that would further refute the principle of ''horror vacui''. He correctly noted that the atmosphere of the Earth surrounds the planet like a shell, with the density gradually declining with altitude. He concluded that there must be a vacuum between the Earth and the Moon. Back in the 15th century, German theologian
Nicolaus Cusanus Nicholas of Cusa (1401 – 11 August 1464), also referred to as Nicholas of Kues and Nicolaus Cusanus (), was a German Catholic cardinal, philosopher, theologian, jurist, mathematician, and astronomer. One of the first German proponents of Renai ...
speculated that the Universe lacked a center and a circumference. He believed that the Universe, while not infinite, could not be held as finite as it lacked any bounds within which it could be contained. These ideas led to speculations as to the infinite dimension of space by the Italian philosopher
Giordano Bruno Giordano Bruno (; ; la, Iordanus Brunus Nolanus; born Filippo Bruno, January or February 1548 – 17 February 1600) was an Italian philosopher, mathematician, poet, cosmological theorist, and Hermetic occultist. He is known for his cosmologic ...
in the 16th century. He extended the Copernican
heliocentric Heliocentrism (also known as the Heliocentric model) is the astronomical model in which the Earth and planets revolve around the Sun at the center of the universe. Historically, heliocentrism was opposed to geocentrism, which placed the Earth at ...
cosmology to the concept of an infinite Universe filled with a substance he called
aether Aether, æther or ether may refer to: Metaphysics and mythology * Aether (classical element), the material supposed to fill the region of the universe above the terrestrial sphere * Aether (mythology), the personification of the "upper sky", sp ...
, which did not resist the motion of heavenly bodies. English philosopher William Gilbert arrived at a similar conclusion, arguing that the stars are visible to us only because they are surrounded by a thin aether or a void. This concept of an aether originated with ancient Greek philosophers, including Aristotle, who conceived of it as the medium through which the heavenly bodies move. The concept of a Universe filled with a luminiferous aether retained support among some scientists until the early 20th century. This form of aether was viewed as the medium through which light could propagate. In 1887, the Michelson–Morley experiment tried to detect the Earth's motion through this medium by looking for changes in the speed of light depending on the direction of the planet's motion. The null result indicated something was wrong with the concept. The idea of the luminiferous aether was then abandoned. It was replaced by Albert Einstein's theory of special relativity, which holds that the speed of light in a vacuum is a fixed constant, independent of the observer's motion or
frame of reference In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points― geometric points whose position is identified both mathema ...
. The first professional astronomer to support the concept of an infinite Universe was the Englishman Thomas Digges in 1576. But the scale of the Universe remained unknown until the first successful measurement of the distance to a nearby star in 1838 by the German astronomer Friedrich Bessel. He showed that the star system 61 Cygni had a
parallax Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight and is measured by the angle or semi-angle of inclination between those two lines. Due to foreshortening, nearby objects ...
of just 0.31 
arcsecond A minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of angular measurement equal to of one degree. Since one degree is of a turn (or complete rotation), one minute of arc is of a turn. The na ...
s (compared to the modern value of 0.287″). This corresponds to a distance of over 10
light year A light-year, alternatively spelled light year, is a large unit of length used to express astronomical distances and is equivalent to about 9.46 trillion kilometers (), or 5.88 trillion miles ().One trillion here is taken to be 1012 ...
s. In 1917, Heber Curtis noted that
nova A nova (plural novae or novas) is a transient astronomical event that causes the sudden appearance of a bright, apparently "new" star (hence the name "nova", which is Latin for "new") that slowly fades over weeks or months. Causes of the dramati ...
e in spiral nebulae were, on average, 10 magnitudes fainter than galactic novae, suggesting that the former are 100 times further away. The distance to the Andromeda Galaxy was determined in 1923 by American astronomer
Edwin Hubble Edwin Powell Hubble (November 20, 1889 – September 28, 1953) was an Americans, American astronomer. He played a crucial role in establishing the fields of extragalactic astronomy and observational cosmology. Hubble proved that many objects ...
by measuring the brightness of cepheid variables in that galaxy, a new technique discovered by Henrietta Leavitt. This established that the Andromeda galaxy, and by extension all galaxies, lay well outside the Milky Way. The modern concept of outer space is based on the "Big Bang" cosmology, first proposed in 1931 by the Belgian physicist Georges Lemaître. This theory holds that the universe originated from a very dense form that has since undergone continuous
expansion Expansion may refer to: Arts, entertainment and media * ''L'Expansion'', a French monthly business magazine * ''Expansion'' (album), by American jazz pianist Dave Burrell, released in 2004 * ''Expansions'' (McCoy Tyner album), 1970 * ''Expansio ...
. The earliest known estimate of the temperature of outer space was by the Swiss physicist Charles É. Guillaume in 1896. Using the estimated radiation of the background stars, he concluded that space must be heated to a temperature of 5–6 K. British physicist
Arthur Eddington Sir Arthur Stanley Eddington (28 December 1882 – 22 November 1944) was an English astronomer, physicist, and mathematician. He was also a philosopher of science and a populariser of science. The Eddington limit, the natural limit to the lumin ...
made a similar calculation to derive a temperature of 3.18 K in 1926. German physicist
Erich Regener Erich Rudolf Alexander Regener (12 November 1881 – 27 February 1955) was a German physicist known primarily for the design and construction of instruments to measure cosmic ray intensity at various altitudes. He is also known for predicting ...
used the total measured energy of cosmic rays to estimate an intergalactic temperature of 2.8 K in 1933. American physicists Ralph Alpher and Robert Herman predicted 5 K for the temperature of space in 1948, based on the gradual decrease in background energy following the then-new
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
theory. The modern measurement of the cosmic microwave background is about 2.7K. The term ''outward space'' was used in 1842 by the English poet Lady
Emmeline Stuart-Wortley Lady Emmeline Charlotte Elizabeth Stuart-Wortley (née Manners; 1806 – 20 October 1855) was an English poet and writer, best known for her ''Travels in the United States, etc. During 1849 and 1850''. She was editor of ''The Keepsake'' volumes ...
in her poem "The Maiden of Moscow". The expression ''outer space'' was used as an astronomical term by Alexander von Humboldt in 1845. It was later popularized in the writings of H. G. Wells in 1901. The shorter term ''space'' is older, first used to mean the region beyond Earth's sky in
John Milton John Milton (9 December 1608 – 8 November 1674) was an English poet and intellectual. His 1667 epic poem '' Paradise Lost'', written in blank verse and including over ten chapters, was written in a time of immense religious flux and political ...
's ''
Paradise Lost ''Paradise Lost'' is an epic poem in blank verse by the 17th-century English poet John Milton (1608–1674). The first version, published in 1667, consists of ten books with over ten thousand lines of verse (poetry), verse. A second edition fo ...
'' in 1667. "
Spaceborne Outer space, commonly shortened to space, is the expanse that exists beyond Earth and its atmosphere and between celestial bodies. Outer space is not completely empty—it is a near-perfect vacuum containing a low density of particles, pred ...
" denotes existing in outer space, especially if carried by a spacecraft; similarly, " space-based" means based in outer space or using space technology.


Exploration

For most of human history, space was explored by observations made from the Earth's surface—initially with the unaided eye and then with the telescope. Before reliable rocket technology, the closest that humans had come to reaching outer space was through balloon flights. In 1935, the U.S. Explorer II crewed balloon flight reached an altitude of . This was greatly exceeded in 1942 when the third launch of the German
A-4 rocket The V-2 (german: Vergeltungswaffe 2, lit=Retaliation Weapon 2), with the technical name '' Aggregat 4'' (A-4), was the world’s first long-range guided ballistic missile. The missile, powered by a liquid-propellant rocket engine, was develo ...
climbed to an altitude of about . In 1957, the uncrewed satellite
Sputnik 1 Sputnik 1 (; see § Etymology) was the first artificial Earth satellite. It was launched into an elliptical low Earth orbit by the Soviet Union on 4 October 1957 as part of the Soviet space program. It sent a radio signal back to Earth for t ...
was launched by a Russian
R-7 rocket The R-7 family of rockets (russian: Р-7) is a series of rockets, derived from the Soviet R-7 Semyorka, the world's first ICBM. More R-7 rockets have been launched than any other family of large rockets. When Soviet nuclear warheads became li ...
, achieving Earth orbit at an altitude of . This was followed by the first human spaceflight in 1961, when Yuri Gagarin was sent into orbit on Vostok 1. The first humans to escape low Earth orbit were Frank Borman, Jim Lovell and William Anders in 1968 on board the U.S.
Apollo 8 Apollo 8 (December 21–27, 1968) was the first crewed spacecraft to leave low Earth orbit and the first human spaceflight to reach the Moon. The crew orbited the Moon ten times without landing, and then departed safely back to Earth. These ...
, which achieved lunar orbit and reached a maximum distance of from the Earth. The first spacecraft to reach escape velocity was the Soviet '' Luna 1'', which performed a fly-by of the Moon in 1959. In 1961, '' Venera 1'' became the first planetary probe. It revealed the presence of the solar wind and performed the first fly-by of Venus, although contact was lost before reaching Venus. The first successful planetary mission was the 1962 fly-by of Venus by Mariner 2. The first fly-by of Mars was by Mariner 4 in 1964. Since that time, uncrewed spacecraft have successfully examined each of the Solar System's planets, as well their moons and many minor planets and comets. They remain a fundamental tool for the exploration of outer space, as well as for observation of the Earth. In August 2012, '' Voyager 1'' became the first man-made object to leave the Solar System and enter interstellar space.


Application

The absence of air makes outer space an ideal location for astronomy at all wavelengths of the electromagnetic spectrum. This is evidenced by the spectacular pictures sent back by the Hubble Space Telescope, allowing light from more than 13 billion years ago—almost to the time of the Big Bang—to be observed. Not every location in space is ideal for a telescope. The interplanetary zodiacal dust emits a diffuse near-infrared radiation that can mask the emission of faint sources such as extrasolar planets. Moving an infrared telescope out past the dust increases its effectiveness. Likewise, a site like the Daedalus crater on the far side of the Moon could shield a
radio telescope A radio telescope is a specialized antenna and radio receiver used to detect radio waves from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency ...
from the radio frequency interference that hampers Earth-based observations. Uncrewed spacecraft in Earth orbit are an essential technology of modern civilization. They allow direct monitoring of weather conditions, relay long-range communications like television, provide a means of precise navigation, and allow remote sensing of the Earth. The latter role serves a wide variety of purposes, including tracking soil moisture for agriculture, prediction of water outflow from seasonal snow packs, detection of diseases in plants and trees, and
surveillance Surveillance is the monitoring of behavior, many activities, or information for the purpose of information gathering, influencing, managing or directing. This can include observation from a distance by means of electronic equipment, such as c ...
of military activities. The deep vacuum of space could make it an attractive environment for certain industrial processes, such as those requiring ultraclean surfaces. Like asteroid mining, space manufacturing would require a large financial investment with little prospect of immediate return. An important factor in the total expense is the high cost of placing mass into Earth orbit: $–$ per kg, according to a 2006 estimate (allowing for inflation since then). The cost of access to space has declined since 2013. Partially reusable rockets such as the Falcon 9 have lowered access to space below 3500 dollars per kilogram. With these new rockets the cost to send materials into space remains prohibitively high for many industries. Proposed concepts for addressing this issue include, fully reusable launch systems, non-rocket spacelaunch, momentum exchange tethers, and
space elevators A space elevator, also referred to as a space bridge, star ladder, and orbital lift, is a proposed type of planet-to-space transportation system, often depicted in science fiction. The main component would be a cable (also called a tether) anc ...
. Interstellar travel for a human crew remains at present only a theoretical possibility. The distances to the nearest stars mean it would require new technological developments and the ability to safely sustain crews for journeys lasting several decades. For example, the Daedalus Project study, which proposed a spacecraft powered by the fusion of deuterium and
helium-3 Helium-3 (3He see also helion) is a light, stable isotope of helium with two protons and one neutron (the most common isotope, helium-4, having two protons and two neutrons in contrast). Other than protium (ordinary hydrogen), helium-3 is the ...
, would require 36 years to reach the "nearby"
Alpha Centauri Alpha Centauri ( Latinized from α Centauri and often abbreviated Alpha Cen or α Cen) is a triple star system in the constellation of Centaurus. It consists of 3 stars: Alpha Centauri A (officially Rigil Kentaurus), Alpha Centaur ...
system. Other proposed interstellar propulsion systems include light sails, ramjets, and beam-powered propulsion. More advanced propulsion systems could use antimatter as a fuel, potentially reaching
relativistic velocities In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
. In addition to astronomy and space travel, the ultracold temperature of outer space can be used as a renewable cooling technology for various applications on Earth through passive daytime radiative cooling, which enhances longwave infrared (LWIR) thermal radiation heat transfer on the Earth's surface through the infrared window into outer space to lower ambient temperatures. It became possible with the discovery to suppress solar heating with photonic metamaterials.


See also

* Animals in space *
Earth's location in the Universe Knowledge of the location of Earth has been shaped by 400 years of telescopic observations, and has expanded radically since the start of the 20th century. Initially, Earth was believed to be the center of the Universe, which consisted only of ...
* List of government space agencies *
List of topics in space List of topics in space; topics as related to outer space. *List of spaceflight-related accidents and incidents, Accidents in space * Animals in space * Space architecture, Architecture in space * Batteries in space * Christmas on the Internation ...
* Olbers' paradox * Outline of space science * Panspermia *
Space and survival Space and survival is the idea that the long-term survival of the human species and technological civilization requires the building of a spacefaring civilization that utilizes the resources of outer space, and that not doing this will lead to hu ...
*
Space environment Space environment is a branch of astronautics, aerospace engineering and space physics that seeks to understand and address conditions existing in space that affect the design and operation of spacecraft. A related subject, space weather, deals ...
* Space race *
Space station A space station is a spacecraft capable of supporting a human crew in orbit for an extended period of time, and is therefore a type of space habitat. It lacks major propulsion or landing systems. An orbital station or an orbital space station i ...
* Space technology * Space weather * Space weathering *
Timeline of knowledge about the interstellar and intergalactic medium Timeline of knowledge about the interstellar medium and intergalactic medium * 1848 — Lord Rosse studies M1 and names it the Crab Nebula. The telescope is much larger than the small refactors typical of this period and it also reveal ...
* Timeline of Solar System exploration *
Timeline of spaceflight This is the timeline of known spaceflights, both crewed and uncrewed, sorted chronologically by launch date. Owing to its large size, the timeline is split into smaller articles, one for each year since 1951. There is a separate list for all ...


References


Citations


Sources

* * * * Note: this source gives a value of molecules per cubic meter. * * * * Note: a light year is about 1013 km. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * *


External links

{{DEFAULTSORT:Outer Space Environments Vacuum