HOME

TheInfoList



OR:

Chemogenetics is the process by which
macromolecule A macromolecule is a very large molecule important to biophysical processes, such as a protein or nucleic acid. It is composed of thousands of covalently bonded atoms. Many macromolecules are polymers of smaller molecules called monomers. ...
s can be engineered to interact with previously unrecognized small molecules. Chemogenetics as a term was originally coined to describe the observed effects of mutations on chalcone isomerase activity on substrate specificities in the flowers of ''
Dianthus caryophyllus ''Dianthus caryophyllus'' (), commonly known as the carnation or clove pink, is a species of ''Dianthus''. It is likely native to the Mediterranean region but its exact range is unknown due to extensive cultivation for the last 2,000 years.Med ...
''. This method is very similar to
optogenetics Optogenetics is a biological technique to control the activity of neurons or other cell types with light. This is achieved by expression of light-sensitive ion channels, pumps or enzymes specifically in the target cells. On the level of indiv ...
; however, it uses chemically engineered molecules and ligands instead of light and light-sensitive channels known as
opsin Animal opsins are G-protein-coupled receptors and a group of proteins made light-sensitive via a chromophore, typically retinal. When bound to retinal, opsins become Retinylidene proteins, but are usually still called opsins regardless. Most pro ...
s. In recent research projects, chemogenetics has been widely used to understand the relationship between brain activity and behavior. Prior to chemogenetics, researchers used methods such as
transcranial magnetic stimulation Transcranial magnetic stimulation (TMS) is a noninvasive form of brain stimulation in which a changing magnetic field is used to induce an electric current at a specific area of the brain through electromagnetic induction. An electric pulse gener ...
and
deep brain stimulation Deep brain stimulation (DBS) is a neurosurgical procedure involving the placement of a medical device called a neurostimulator, which sends electrical impulses, through implanted electrodes, to specific targets in the brain (the brain nucle ...
to study the relationship between neuronal activity and behavior.


Comparison to optogenetics

Optogenetics Optogenetics is a biological technique to control the activity of neurons or other cell types with light. This is achieved by expression of light-sensitive ion channels, pumps or enzymes specifically in the target cells. On the level of indiv ...
and chemogenetics are the more recent and popular methods used to study this relationship. Both of these methods target specific brain circuits and cell population to influence cell activity. However, they use different procedures to accomplish this task. Optogenetics uses light-sensitive channels and pumps that are virally introduced into neurons. Cells' activity, having these channels, can then be manipulated by light. Chemogenetics, on the other hand, uses chemically engineered receptors and exogenous molecules specific for those receptors, to affect the activity of those cells. The engineered macromolecules used to design these receptors include nucleic acid hybrids,
kinase In biochemistry, a kinase () is an enzyme that catalysis, catalyzes the transfer of phosphate groups from High-energy phosphate, high-energy, phosphate-donating molecules to specific Substrate (biochemistry), substrates. This process is known as ...
s, variety of metabolic enzymes, and
G-protein coupled receptors G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily-related p ...
such as DREADDs. DREADDs are the most common G protein–coupled receptors used in chemogenetics. These receptors solely get activated by the drug of interest (inert molecule) and influence physiological and neural processes that take place within and outside of the central nervous system. Chemogenetics has recently been favored over optogenetics, and it avoids some of the challenges of optogenetics. Chemogenetics does not require the expensive light equipment, and therefore, is more accessible. The resolution in Optogenetic declines due to light scattering and illuminance declined levels as the distance between the subject and the light source increases. These factors, therefore, don’t allow for all cells to be affected by light and lead to a lower spatial resolution. Chemogenetics, however, does not require light usage and therefore can achieve a higher spatial resolution.


Applications

G-protein coupled receptors' usage and chemogenetics are nowadays the targets for many of the pharmaceutical companies to cure and alleviate symptoms of diseases that involve all tissues of the body. More specifically, DREADDs have been used to explore treatment options for various neurodegenerative and psychological conditions such as Parkinson’s disease, depression, anxiety, and addiction. These aforementioned conditions involve processes that occur within and outside of the nervous system involving neurotransmitters such as gamma-aminobutyric acid and
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can syn ...
. Chemogenetics has therefore been used in pharmacology to adjust the levels of such neurotransmitters in specific neuron while minimizing the side effects of treatment. To treat and relieve the symptoms of any disease using the DREADDs, these receptors are delivered to the area of interest via viral transduction. Recently some studies have considered using a new method called retro DREADDs. This method allows specific neuronal pathways to be studied under cellular resolution. Unlike classic DREADDs, this method is usually used in wild type animals, and these receptors are given to the targeted cells via injection of two viral vectors.


Animal Models

DREADDS have been used in many animal models (e.g., mice and other non-primate animals) to target and influence the activity of various cells. Chemogenetics used in animals assists with demonstrating human disease models such as
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms usually emerge slowly, and as the disease worsens, non-motor symptoms becom ...
. Having this information allows scientists understand whether viral expression of DREADD proteins, both in-vivo enhancers and inhibitors of neuronal function can be used to bidirectionally affect the behaviors and the activity of the involved neurons. Recent studies have shown that DREADDs were successfully used to treat the motor deficits of rats modeling Parkinson's disease. Other studies have had successes linking the usage of DREADDs and influencing drug seeking and drug sensitization behavior. The progression of chemogenetics from rodents to non-human primates has been slow due to increased demand in time and expense surrounding these projects. However, some recent studies in 2016 have been able to demonstrate successes showing that silencing the activity of neurons in the
orbitofrontal cortex The orbitofrontal cortex (OFC) is a prefrontal cortex region in the frontal lobes of the brain which is involved in the cognitive process of decision-making. In non-human primates it consists of the association cortex areas Brodmann area 11, 1 ...
along with the removal of rhinal cortex, restricted the reward task performance in macaques.


Limitation and future directions

Chemogenetics and usage of DREADDs have allowed researchers to advance in biomedical research areas including many
neurodegenerative A neurodegenerative disease is caused by the progressive loss of structure or function of neurons, in the process known as neurodegeneration. Such neuronal damage may ultimately involve cell death. Neurodegenerative diseases include amyotrophic ...
and psychiatric conditions. Chemogenetics have been used in these fields to induce specific and reversible brain lesions and therefore, study specific activities of neuron population. Although chemogenetics offers specificity and high spatial resolution, it still faces some challenges when used in investigating neuropsychiatric disorders. Neuropsychiatric disorders usually have a complex nature where lesions in the brain have not been identified as the main cause. Chemogenetics has been used to reverse some of the deficits revolving such conditions; however, it has not been able to identify the main cause of neuropsychiatric diseases and cure these conditions completely due to complex nature of these conditions. Nevertheless, chemogenetics has been used successfully in a preclinical model of drug-resistant
epilepsy Epilepsy is a group of non-communicable neurological disorders characterized by recurrent epileptic seizures. Epileptic seizures can vary from brief and nearly undetectable periods to long periods of vigorous shaking due to abnormal electrical ...
, where seizures arise from a discrete part of the brain.


See also

* Receptor activated solely by a synthetic ligand


References

{{Reflist Chemical engineering Neurology procedures Neurotechnology Neurophysiology Neuropsychology Genetics