Cadherin–catenin Complex In Learning And Memory
   HOME

TheInfoList



OR:

Long-term potentiation In neuroscience, long-term potentiation (LTP) is a persistent strengthening of synapses based on recent patterns of activity. These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neurons ...
(LTP), thought to be the cellular basis for learning and memory, involves a specific signal transmission process that underlies synaptic plasticity. Among the many mechanisms responsible for the maintenance of synaptic plasticity is the cadherin
catenin Catenins are a family of proteins found in complexes with cadherin cell adhesion molecules of animal cells. The first two catenins that were identified became known as α-catenin and β-catenin. α-Catenin can bind to β-catenin and can also bind ...
complex. By forming complexes with intracellular
catenin Catenins are a family of proteins found in complexes with cadherin cell adhesion molecules of animal cells. The first two catenins that were identified became known as α-catenin and β-catenin. α-Catenin can bind to β-catenin and can also bind ...
proteins, neural cadherins (
N-cadherin Cadherin-2 also known as Neural cadherin (N-cadherin), is a protein that in humans is encoded by the ''CDH2'' gene. CDH2 has also been designated as CD325 (cluster of differentiation 325). Cadherin-2 is a transmembrane protein expressed in multipl ...
s) serve as a link between synaptic activity and
synaptic plasticity In neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. Since memories are postulated to be represented by vastly interconnected neural circuits ...
, and play important roles in the processes of learning and memory. N-cadherins are believed to be involved in mediating LTP and the synaptic changes underlying learning and memory. During embryonic development,
cadherins Cadherins (named for "calcium-dependent adhesion") are a type of cell adhesion molecule (CAM) that is important in the formation of adherens junctions to allow cells to adhere to each other . Cadherins are a class of type-1 transmembrane proteins, ...
are initially widely distributed, but they become gradually more localized to pre- and post-synaptic sites while synapses are being formed. Blocking cadherin function with specific proteins does not affect basal synaptic properties, but it can impair the induction of LTP.


Structural function and adhesion


Structure of the cadherin–catenin complex

N-cadherins are transmembrane proteins expressed in the majority of CNS synapses. N-cadherins are most commonly expressed on both the presynaptic active zone and postsynaptic density (PSD) regions, and contain both extracellular Ca2+ binding domains as well as intracellular domains for binding their protein partners. A common binding partner for Cadherins are intracellular catenin proteins, specifically the three different subtypes, α-catenins, β-catenins, and p120ctn family catenins. β-catenins and p120ctns bind cadherin’s intracellular domain at the distal and proximal regions respectively. α-catenins, when in monomeric form, will associate with the cadherin-catenin complex via β-catenins. In homodimeric form, α-catenins do not bind β- catenins, but preferentially bind F-actin and other proteins promoting F-actin polymerization. Each catenin subtype and its interaction with cadherins plays a distinct role in the mediation of synaptic plasticity and spine structure.


Regulation of adhesion

Evidence suggest that N-Cadherins stabilize the connection between the presynaptic terminal and postsynaptic spine and that this stabilization increases the likelihood that released glutamate will bind receptors on the postsynaptic neuron. At basal levels of synaptic activity, N-cadherins are largely monomers and are thus weakly adhesive to cadherins located in the cell on the opposite side of the synapse. The influx of Ca2+ through NMDARs, promotes the dimerization of N-cadherins. Dimerized cadherins readily bind to their presynaptic cadherin partners. Inhibition of N-cadherin binding via blocking antibodies prevents the induction of late phase L-long term potentiation, suggesting that the adhesive property of dimeric N-cadherin is necessary for late phase L-LTP. Additionally, KCl depolarization of the presynaptic axon both confers protease resistance to N-cadherins and disperses them throughout the PSD from their original clustering in synaptic puncta, thus increasing their efficacy for cell adhesion. N-cadherin adhesion further stabilizes the synapse by enabling AMPAR-activation-induced spine head expansion. This morphological change helps to prevent further synaptic modifications that could jeopardize the information held by the already existing synaptic connections. Spine head expansion accomplishes this by reducing the NMDAR to AMPAR ratio, creating a proportionally smaller calcium influx, as well as by allowing for faster calcium diffusion out of the spine. The rapid removal of calcium prevents it from initiating the post-translational modifications that would further alter synaptic strength. Overexpression of an N-cadherin mutant incapable of adhesion prevents spine head expansion, demonstrating N-cadherin’s essential role in this process.


Regulation of cadherin surface levels, turnover, and stability

Regulation mechanisms differ in their synthesis requirements and their temporal initiation. One mode of cadherin regulation is surface stabilization, a fairly rapid process (occurring approximately 100 minutes after activity) that is independent of protein synthesis. NMDAR activity reduces phosphorylation of β-catenin at tyr-654, thereby inhibiting N-cadherin endocytosis and facilitating surface retention and expression. Surface expression is also regulated via
protocadherin Protocadherins (Pcdhs) are the largest mammalian subgroup of the cadherin superfamily of homophilic cell-adhesion proteins. They were discovered by Shintaro Suzuki's group, when they used PCR to find new members of the cadherin family. The PCR fr ...
-mediated adhesion. Protocadherin-alpha and protocadherin-gamma interact to form a protein complex that enhances the surface expression of each cadherin subtype. Cadherin expression is also regulated by activity-induced internalization, which occurs much later than surface stabilization (an average of 4 hours after the stimulus). Internalization is dependent on protein synthesis, and p120 catenin proteins (p120ctn) are implicated in the turnover, degradation and ‘clustering’ of cadherins into the adhesive junctions at the synapse. P120 ctn proteins are thought to either inhibit endocytosis of neural cadherins, or act at the cell surface to control cadherin turnover. Down-regulation of p120 ctn leads to greater cadherin endocytosis and prevents adhesion between the pre and post-synaptic neuron. Such evidence strongly suggests that p120 is necessary for cadherin stability.


Binding and signaling


Intracellular binding partners

β-catenin localizes reserve pool vesicles (RPVs) at presynaptic sites. The deletion of β-catenin in vivo results in a decrease in the number of RPVs localized in the synaptic site and an increase in RPVs dispersed along the axon. Moreover, RPVs were unresponsive to continuous trains of stimulation of the presynaptic neuron in B-catenin knockouts. This effect of B-catenin is independent of cadherin-mediated adhesion, and is instead modulated by PDZ binding proteins such as Veli to cadherin. Additionally,
BDNF Brain-derived neurotrophic factor (BDNF), or abrineurin, is a protein found in the and the periphery. that, in humans, is encoded by the ''BDNF'' gene. BDNF is a member of the neurotrophin family of growth factors, which are related to the canon ...
/
TrkB Tropomyosin receptor kinase B (TrkB), also known as tyrosine receptor kinase B, or BDNF/NT-3 growth factors receptor or neurotrophic tyrosine kinase, receptor, type 2 is a protein that in humans is encoded by the ''NTRK2'' gene. TrkB is a recepto ...
signaling leads to the phosphorylation of β-catenin at its Y654 site, causing the β-catenin–cadherin complex to dissolve and consequently increasing
synaptic vesicle In a neuron, synaptic vesicles (or neurotransmitter vesicles) store various neurotransmitters that are released at the synapse. The release is regulated by a voltage-dependent calcium channel. Vesicles are essential for propagating nerve impulse ...
mobility. Catenins also bind many scaffolding proteins, receptors, kinases and phosphatases. For example, the cadherin-α-catenin complex binds the actin cytoskeleton, though whether it binds via binding proteins or direct interactions is unknown.


Signal transduction pathways

p120ctn signals through
guanine nucleotide exchange factor Guanine nucleotide exchange factors (GEFs) are proteins or protein domains that activate monomeric GTPases by stimulating the release of guanosine diphosphate (GDP) to allow binding of guanosine triphosphate (GTP). A variety of unrelated struc ...
s (GEFs) and
GAPs Gaps is a member of the Montana group of Patience games, where the goal is to arrange all the cards in suit from Deuce (a Two card) to King. Other solitaire games in this family include Spaces, Addiction, Vacancies, Clown Solitaire, Paganini, ...
to activate the
Rho family of GTPases The Rho family of GTPases is a family of small (~21 kDa) signaling G proteins, and is a subfamily of the Ras superfamily. The members of the Rho GTPase family have been shown to regulate many aspects of intracellular actin dynamics, and are foun ...
. RhoA must be inhibited by P120ctn to maintain spine density and length.
Rac (GTPase) Rac is a subfamily of the Rho family of GTPases, small (~21 kDa) signaling G proteins (more specifically a GTPase). Just as other G proteins, Rac acts as a molecular switch, remaining inactive while bound to GDP and activated once GEFs remove GDP, ...
inhibition remediates a reduction of spine density in p120ctn deficiency. E-cadherin binding to p120ctn may activate SRC leading to activation of Rac1 which results in phosphorylation of
LIMK1 LIM domain kinase 1 is an enzyme that in humans is encoded by the ''LIMK1'' gene. Function There are approximately 40 known eukaryotic LIM proteins, so named for the LIM domains they contain. LIM domains are highly conserved cysteine-rich struc ...
and LIMK2 to deactivate cofilin causing G-actin polymerization. Meanwhile, phosphorylation of
PI3K Phosphoinositide 3-kinases (PI3Ks), also called phosphatidylinositol 3-kinases, are a family of enzymes involved in cellular functions such as cell growth, proliferation, differentiation, motility, survival and intracellular trafficking, which i ...
by SRC activates RhoA which leads to activation of cofilin-P and disruption of filamentous actin. When the WAVE-1 gene was disrupted in mice, it resulted in cognitive defects such as losses in learning and memory implicating the WAVE-1 branch of the Rac pathway. Using an in vivo dentate gyrus LTP model, it was shown that LTP induction is associated with an increase in F-
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ov ...
in the dendritic spines, and this is a long lasting change. It was shown that NMDA receptor activation is required for this effect. Furthermore, the use of
latrunculin The latrunculins are a family of natural products and toxins produced by certain sponges, including genus '' Latrunculia'' and ''Negombata'', whence the name is derived. It binds actin monomers near the nucleotide binding cleft with 1:1 stoichiome ...
A was able to impair late phase LTP in this model, again suggesting that actin remodelling is necessary for LTP.


Cellular function


Role in receptor trafficking/stability

When the glutamate receptor binding protein ABP and p120ctn are co-expressed, anti-p120ctn serum pulls out a complex containing both proteins from cell lysates. The same occurs for a protein similar to ABP, called GRIP. cDNA screening and yeast mating assays demonstrate that the
PDZ domain The PDZ domain is a common structural domain of 80-90 amino-acids found in the signaling proteins of bacteria, yeast, plants, viruses and animals. Proteins containing PDZ domains play a key role in anchoring receptor proteins in the membrane to ...
-binding motif at the p120ctn C-terminus enables such interactions. Co-IP data shows that p120ctn can simultaneously complex with cadherin and either ABP or GRIP. Dominant negative p120ctn fragments, which failed to interact with ABP and GRIP, impaired the stabilization of GluR2 and
GluR3 Glutamate receptor 3 is a protein that in humans is encoded by the ''GRIA3'' gene. Function Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian brain and are activated in a variety of normal neurophys ...
AMPAR subunits, respectively, at the plasma membrane. Co-localization of p120ctn with PSD-95 suggests that cadherin-p120ctn-ABP/GRIP complexes anchor AMPARs at the
postsynaptic density The postsynaptic density (PSD) is a protein dense ''specialization'' attached to the postsynaptic membrane. PSDs were originally identified by electron microscopy as an electron-dense region at the membrane of a postsynaptic neuron. The PSD is in ...
, but it is unclear whether anchoring also occurs at perisynaptic sites.


Regulation of gene expression

Cadherins and catenins have been shown to be involved in regulating gene expression, an important process in synaptic plasticity. Glutamate binding to NMDA upregulates the production of N-cadherin’s intracellular domain peptide, N-cad/CTF2, an effect blocked by the NMDA receptor antagonist, APV.
Transfection Transfection is the process of deliberately introducing naked or purified nucleic acids into eukaryotic cells. It may also refer to other methods and cell types, although other terms are often preferred: " transformation" is typically used to des ...
of N-cad/CTF2 decreases nuclear CBP ( CREB-binding protein) and increases
cytosolic The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
CBP. Furthermore, N-cad/CTF2 co-immunoprecipitates with CBP, and transfection of N-cad/CTF2 reduces CBP steady state levels, consequently impairing
CREB CREB-TF (CREB, cAMP response element-binding protein) is a cellular transcription factor. It binds to certain DNA sequences called cAMP response elements (CRE), thereby increasing or decreasing the transcription of the genes. CREB was first de ...
-containing DNA complex formation (See figures on the right). Expression of
lymphoid enhancer-binding factor 1 Lymphoid enhancer-binding factor 1 (LEF1) is a protein that in humans is encoded by the ''LEF1'' gene. It's a member of T cell factor/lymphoid enhancer factor ( TCF/LEF) family. Function Lymphoid enhancer-binding factor-1 (LEF1) is a 48-kD nu ...
(LEF-1) triggers the translocation of β-catenin to the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom * Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucl ...
, where it upregulates transcription, and transfection of N-cadherin or α-catenin reverses this effect. Additionally, treating neurons with NMDAR agonist causes cleavage of the β-catenin N-terminus, and the
C-terminal The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When the protein is ...
fragments translocate to the nucleus, where, as transfection experiments show, β-catenin increases T-cell factor (TCF) dependent transcription.


References

{{DEFAULTSORT:Cadherin-catenin complex in learning and memory Neuroscience of memory