Borazole
   HOME

TheInfoList



OR:

Borazine, also known as borazole, is a non-polar
inorganic compound In chemistry, an inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds, that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as '' inorganic chemist ...
with the
chemical formula In chemistry, a chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, ...
B3H6N3. In this cyclic compound, the three BH units and three NH units alternate. The compound is isoelectronic and isostructural with
benzene Benzene is an organic chemical compound with the molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar ring with one hydrogen atom attached to each. Because it contains only carbon and hydrogen atoms, ...
. For this reason borazine is sometimes referred to as “inorganic benzene”. Like benzene, borazine is a colourless
liquid A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, a ...
with an aromatic smell.


Synthesis

The compound was reported in 1926 by the chemists
Alfred Stock Alfred Stock (July 16, 1876 – August 12, 1946) was a German inorganic chemist. He did pioneering research on the hydrides of boron and silicon, coordination chemistry, mercury, and mercury poisoning. The German Chemical Society's Alfred-Stock Me ...
and Erich Pohland by a reaction of diborane with
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous was ...
. Borazine can be synthesized by treating diborane and
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous was ...
in a 1:2 ratio at 250–300 °C with a
conversion Conversion or convert may refer to: Arts, entertainment, and media * "Conversion" (''Doctor Who'' audio), an episode of the audio drama ''Cyberman'' * "Conversion" (''Stargate Atlantis''), an episode of the television series * "The Conversion" ...
of 50%. :3 B2H6 + 6 NH3 → 2 B3H6N3 + 12 H2 An alternative more efficient route begins with sodium borohydride and ammonium sulfate: :6 NaBH4 + 3 (NH4)2SO4 → 2 B3N3H6 + 3 Na2SO4 + 18 H2 In a two-step process to borazine, boron trichloride is first converted to trichloroborazine: :3 BCl3 + 3 NH4Cl → Cl3B3H3N3 + 9 HCl The B-Cl bonds are subsequently converted to B-H bonds: :2 Cl3B3H3N3 + 6 NaBH4 → 2 B3H6N3 + 3 B2H6 + 6 NaCl


Structure

Borazine is isoelectronic with benzene and has similar connectivity, so it is sometimes referred to as "inorganic benzene". This comparison is not rigorously valid due to the electronegativity difference between
boron Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the ''boron group'' it has th ...
and nitrogen. X-ray crystallographic structural determinations show that the bond lengths within the borazine ring are all equivalent at 1.429 Å, a property shared by benzene. However, the borazine ring does not form a perfect hexagon. The bond angle is 117.1° at the boron atoms and 122.9° at the nitrogens, giving the molecule the ''D''3''h'' symmetry point group. The electronegativity of boron (2.04 on the
Pauling scale Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the d ...
) compared to that of nitrogen (3.04) and also the
electron deficiency Electron deficiency (and electron-deficient) is jargon that is used in two contexts: species that violate the octet rule because they have too few valence electrons and species that happen to follow the octet rule but have electron-acceptor properti ...
on the boron
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
and the lone pair on nitrogen favor alternative mesomer structures for borazine. Boron behaves as a
Lewis acid A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any sp ...
and nitrogen behaves as a
Lewis base A Lewis acid (named for the American physical chemist Gilbert N. Lewis) is a chemical species that contains an empty orbital which is capable of accepting an electron pair from a Lewis base to form a Lewis adduct. A Lewis base, then, is any sp ...
.


Aromaticity

Due to its similarities to benzene, there have been a number of computational and experimental analyses of borazine's aromaticity. The number of pi electrons in borazine obeys the 4n + 2 rule, and the B-N bond lengths are equal, which suggests the compound may be aromatic. The electronegativity difference between boron and nitrogen, however, creates an unequal sharing of charge which results in bonds with greater ionic character, and thus it is expected to have poorer delocalization of electrons than the all-carbon analog. Borazine, with a standard enthalpy change of formation ΔHf of −531 kJ/mol, is thermally very stable.


Natural bond orbitals (NBO)

Natural bond orbital (NBO) analysis suggests weak aromaticity in borazine. In the NBO model, B-N bonds in the ring are slightly displaced from the nuclear axes, and B and N have large differences in charge. Natural chemical shielding (NCS) analysis provides some further evidence for aromaticity based on a contribution of the B-N π bond to magnetic shielding. Computations based on NBO orbitals show that this π bond allows for weak ring current which somewhat counteracts a magnetic field simulated at the center of the borazine ring. A small ring current does suggest some delocalization.


Electron localization function (ELF)

Topological analysis of bonding in borazine by the electron localization function (ELF) indicates that borazine can be described as a π aromatic compound. However, the bonding in borazine is less delocalized than in benzene based on a difference in bifurcation values of the electron basins. Larger bifurcation values indicate better electron delocalization, and it is argued that when this bifurcation value is greater than 0.70, the delocalization is sufficient to designate a compound aromatic. For benzene, this value is 0.91, but the borazine π system bifurcates at the ELF value 0.682. This is caused by the difference in electronegativity between B and N, which produces a weaker bond interaction than the C-C interaction in benzene, leading to increased localization of electrons on the B-H and N-H units. The bifurcation value is slightly below the limit of 0.70 which suggests moderate aromaticity.


Reactivity


Hydrolysis

Borazine hydrolyzes readily, yielding boric acid, ammonia, and hydrogen.


Polymerization

Heating borazine at 70 °C expels hydrogen with formation of polyborazylene: :n B3N3H6 → 1/n 3N3H4sub>n


With hydrogen halides and halogens

With
hydrogen chloride The compound hydrogen chloride has the chemical formula and as such is a hydrogen halide. At room temperature, it is a colourless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hydrogen chloride ga ...
it forms an adduct. :B3N3H6 + 3 HCl → B3N3H9Cl3 :Addition reaction of borazine with hydrogen chloride :B3N3H9Cl3 + NaBH4 → (BH4N)3 :Reduction with sodium borohydride The addition reaction with
bromine Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest element in group 17 of the periodic table (halogens) and is a volatile red-brown liquid at room temperature that evaporates readily to form a simila ...
does not require a
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
. Borazines undergo nucleophilic attack at boron and
electrophilic In chemistry, an electrophile is a chemical species that forms bonds with nucleophiles by accepting an electron pair. Because electrophiles accept electrons, they are Lewis acids. Most electrophiles are positively charged, have an atom that carri ...
attack at nitrogen.


Ceramic precursor

Boron nitride can be prepared by heating polyborazylene to 1000 °C. Borazines are also starting materials for other potential ceramics such as ''boron carbonitrides''. Borazine can also be used as a precursor to grow
hexagonal boron nitride Boron nitride is a thermally and chemically resistant refractory compound of boron and nitrogen with the chemical formula BN. It exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal ...
(h-BN) thin films and single layers on catalytic surfaces such as copper, platinum, nickel iron and many more, with
chemical vapor deposition Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (substra ...
(CVD). Polyborazylene has been proposed as a recycled hydrogen storage medium for hydrogen fuel cell vehicle applications, using a "single pot" process for digestion and reduction to recreate ammonia borane. Among other B-N type compounds mixed amino-nitro substituted borazines have been predicted to outperform carbon based explosives such as CL-20.


Related compounds

() is a six-membered aromatic ring with two carbon atoms, two nitrogen atoms, and two boron atoms in opposing pairs.
1,2-Dihydro-1,2-azaborine 1,2-Dihydro-1,2-azaborine is an aromatic chemical compound with properties intermediate between benzene and borazine. Its chemical formula is CBNH. It resembles a benzene ring, except that two adjacent carbons are replaced by nitrogen and boron, ...
() is a six-membered ring with four carbon atoms, one nitrogen atom, and one boron atom. *
Iminoborane Iminoboranes comprise a group of organoboron compounds with the formula RB=NR'. They are electronically related to acetylenes but are usually more reactive due to the polarity. Structure and bonding The parent iminoborane, HB=NH, is produced ...


References


Further reading

* * * *


External links

{{Authority control Nitrogen heterocycles Boron heterocycles Six-membered rings Boron–nitrogen compounds