HOME

TheInfoList



OR:

Beryllium is a
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
with the
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
Be and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
4. It is a steel-gray, strong, lightweight and brittle
alkaline earth metal The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).. The elements have very similar properties: they are al ...
. It is a
divalent In chemistry, the valence (US spelling) or valency (British spelling) of an chemical element, element is the measure of its combining capacity with other atoms when it forms chemical compounds or molecules. Description The combining capacity, ...
element that occurs naturally only in combination with other elements to form minerals. Notable
gemstones A gemstone (also called a fine gem, jewel, precious stone, or semiprecious stone) is a piece of mineral crystal which, in cut and polished form, is used to make jewelry or other adornments. However, certain rocks (such as lapis lazuli, opal, ...
high in beryllium include
beryl Beryl ( ) is a mineral composed of beryllium aluminium silicate with the chemical formula Be3Al2Si6O18. Well-known varieties of beryl include emerald and aquamarine. Naturally occurring, hexagonal crystals of beryl can be up to several mete ...
( aquamarine,
emerald Emerald is a gemstone and a variety of the mineral beryl (Be3Al2(SiO3)6) colored green by trace amounts of chromium or sometimes vanadium.Hurlbut, Cornelius S. Jr. and Kammerling, Robert C. (1991) ''Gemology'', John Wiley & Sons, New York, p ...
) and
chrysoberyl The mineral or gemstone chrysoberyl is an aluminate of beryllium with the formula Be Al2 O4. The name chrysoberyl is derived from the Greek words χρυσός ''chrysos'' and βήρυλλος ''beryllos'', meaning "a gold-white spar". Despite ...
. It is a relatively rare element in the
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. Acc ...
, usually occurring as a product of the spallation of larger atomic nuclei that have collided with
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
s. Within the cores of stars, beryllium is depleted as it is fused into heavier elements. Beryllium constitutes about 0.0004 percent by mass of Earth's crust. The world's annual beryllium production of 220 tons is usually manufactured by extraction from the mineral
beryl Beryl ( ) is a mineral composed of beryllium aluminium silicate with the chemical formula Be3Al2Si6O18. Well-known varieties of beryl include emerald and aquamarine. Naturally occurring, hexagonal crystals of beryl can be up to several mete ...
, a difficult process because beryllium bonds strongly to
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
. In structural applications, the combination of high
flexural rigidity Flexural rigidity is defined as the force couple required to bend a fixed non- rigid structure by one unit of curvature, or as the resistance offered by a structure while undergoing bending. Flexural rigidity of a beam Although the moment M(x) an ...
,
thermal stability In thermodynamics, thermal stability describes the stability of a water body and its resistance to mixing.Schmidt, W. 1928. Über Temperatur und Stabilitätsverhältnisse von Seen. Geogr. Ann 10: 145 - 177. It is the amount of work needed to tr ...
,
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
and low
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
(1.85 times that of water) make beryllium metal a desirable
aerospace Aerospace is a term used to collectively refer to the atmosphere and outer space. Aerospace activity is very diverse, with a multitude of commercial, industrial and military applications. Aerospace engineering consists of aeronautics and astrona ...
material for aircraft components,
missile In military terminology, a missile is a guided airborne ranged weapon capable of self-propelled flight usually by a jet engine or rocket motor. Missiles are thus also called guided missiles or guided rockets (when a previously unguided rocket i ...
s,
spacecraft A spacecraft is a vehicle or machine designed to fly in outer space. A type of artificial satellite, spacecraft are used for a variety of purposes, including communications, Earth observation, meteorology, navigation, space colonization, p ...
, and satellites. Because of its low density and
atomic mass The atomic mass (''m''a or ''m'') is the mass of an atom. Although the SI unit of mass is the kilogram (symbol: kg), atomic mass is often expressed in the non-SI unit dalton (symbol: Da) – equivalently, unified atomic mass unit (u). 1&nbs ...
, beryllium is relatively transparent to X-rays and other forms of
ionizing radiation Ionizing radiation (or ionising radiation), including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. Some particles can travel ...
; therefore, it is the most common window material for X-ray equipment and components of
particle detector In experimental and applied particle physics, nuclear physics, and nuclear engineering, a particle detector, also known as a radiation detector, is a device used to detect, track, and/or identify ionizing particles, such as those produced by nuc ...
s. When added as an
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility, ...
ing element to
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
,
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
(notably the alloy beryllium copper),
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
, or
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow to ...
, beryllium improves many physical properties. For example, tools and components made of beryllium copper
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility, ...
s are strong and
hard Hard may refer to: * Hardness, resistance of physical materials to deformation or fracture * Hard water, water with high mineral content Arts and entertainment * ''Hard'' (TV series), a French TV series * Hard (band), a Hungarian hard rock supe ...
and do not create sparks when they strike a steel surface. In air, the surface of beryllium oxidizes readily at room temperature to form a passivation layer 1–10 nm thick that protects it from further oxidation and corrosion. The metal oxidizes in bulk (beyond the passivation layer) when heated above , and burns brilliantly when heated to about . The commercial use of beryllium requires the use of appropriate dust control equipment and industrial controls at all times because of the
toxicity Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subst ...
of inhaled beryllium-containing dusts that can cause a chronic life-threatening allergic disease in some people called
berylliosis Berylliosis, or chronic beryllium disease (CBD), is a chronic allergic-type lung response and chronic lung disease caused by exposure to beryllium and its compounds, a form of beryllium poisoning. It is distinct from acute beryllium poisoning, wh ...
. Berylliosis causes
pneumonia Pneumonia is an inflammatory condition of the lung primarily affecting the small air sacs known as alveoli. Symptoms typically include some combination of productive or dry cough, chest pain, fever, and difficulty breathing. The severity ...
and other associated respiratory illness.


Characteristics


Physical properties

Beryllium is a steel gray and hard
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
that is brittle at room temperature and has a close-packed hexagonal
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystal, crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric pat ...
. It has exceptional
stiffness Stiffness is the extent to which an object resists deformation in response to an applied force. The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is. Calculations The stiffness, k, of a b ...
(
Young's modulus Young's modulus E, the Young modulus, or the modulus of elasticity in tension or compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied leng ...
287 GPa) and a
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends ...
of 1287 °C. The
modulus of elasticity An elastic modulus (also known as modulus of elasticity) is the unit of measurement of an object's or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it. The elastic modulus of an object is ...
of beryllium is approximately 50% greater than that of steel. The combination of this modulus and a relatively low density results in an unusually fast sound conduction speed in beryllium – about 12.9 km/s at ambient conditions. Other significant properties are high specific heat () and thermal conductivity (), which make beryllium the metal with the best heat dissipation characteristics per unit weight. In combination with the relatively low coefficient of linear
thermal expansion Thermal expansion is the tendency of matter to change its shape, area, volume, and density in response to a change in temperature, usually not including phase transitions. Temperature is a monotonic function of the average molecular kinetic ...
(11.4×10−6 K−1), these characteristics result in a unique stability under conditions of thermal loading.


Nuclear properties

Naturally occurring beryllium, save for slight contamination by the
cosmogenic Cosmogenic nuclides (or cosmogenic isotopes) are rare nuclides (isotopes) created when a high-energy cosmic ray interacts with the nucleus of an ''in situ'' Solar System atom, causing nucleons (protons and neutrons) to be expelled from the atom ...
radioisotopes, is isotopically pure beryllium-9, which has a nuclear spin of . Beryllium has a large scattering
cross section Cross section may refer to: * Cross section (geometry) ** Cross-sectional views in architecture & engineering 3D *Cross section (geology) * Cross section (electronics) * Radar cross section, measure of detectability * Cross section (physics) **Abs ...
for high-energy neutrons, about 6
barns A barn is an agricultural building usually on farms and used for various purposes. In North America, a barn refers to structures that house livestock, including cattle and horses, as well as equipment and fodder, and often grain.Allen G. ...
for energies above approximately 10 keV. Therefore, it works as a neutron reflector and
neutron moderator In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely mo ...
, effectively slowing the neutrons to the
thermal energy The term "thermal energy" is used loosely in various contexts in physics and engineering. It can refer to several different well-defined physical concepts. These include the internal energy or enthalpy of a body of matter and radiation; heat, d ...
range of below 0.03 eV, where the total cross section is at least an order of magnitude lower; the exact value strongly depends on the purity and size of the crystallites in the material. The single primordial beryllium isotope 9Be also undergoes a (n,2n) neutron reaction with neutron energies over about 1.9 MeV, to produce 8Be, which almost immediately breaks into two alpha particles. Thus, for high-energy neutrons, beryllium is a neutron multiplier, releasing more neutrons than it absorbs. This nuclear reaction is: : + n → 2 + 2 n Neutrons are liberated when beryllium nuclei are struck by energetic
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produce ...
s producing the nuclear reaction : + → + n where is an alpha particle and is a carbon-12 nucleus. Beryllium also releases neutrons under bombardment by gamma rays. Thus, natural beryllium bombarded either by alphas or gammas from a suitable radioisotope is a key component of most radioisotope-powered
nuclear reaction In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformatio ...
neutron source A neutron source is any device that emits neutrons, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear p ...
s for the laboratory production of free neutrons. Small amounts of
tritium Tritium ( or , ) or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with half-life about 12 years. The nucleus of tritium (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus o ...
are liberated when nuclei absorb low energy neutrons in the three-step nuclear reaction : + n → + ,    → + β,    + n → + Note that has a half-life of only 0.8 seconds, β is an electron, and has a high neutron absorption cross section. Tritium is a radioisotope of concern in nuclear reactor waste streams.


Optical properties

As a metal, beryllium is transparent or translucent to most wavelengths of
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s and
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s, making it useful for the output windows of
X-ray tube An X-ray tube is a vacuum tube that converts electrical input power into X-rays. The availability of this controllable source of X-rays created the field of radiography, the imaging of partly opaque objects with penetrating radiation. In contrast ...
s and other such apparatus.


Isotopes and nucleosynthesis

Both stable and unstable isotopes of beryllium are created in stars, but the radioisotopes do not last long. It is believed that most of the stable beryllium in the universe was originally created in the interstellar medium when
cosmic rays Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
induced fission in heavier elements found in interstellar gas and dust. Primordial beryllium contains only one stable isotope, 9Be, and therefore beryllium is a monoisotopic and
mononuclidic element A mononuclidic element or monotopic element is one of the 21 chemical elements that is found naturally on Earth essentially as a single nuclide (which may, or may not, be a stable nuclide). This single nuclide will have a characteristic atomic m ...
. Radioactive cosmogenic 10Be is produced in the atmosphere of the Earth by the
cosmic ray spallation Cosmic ray spallation, also known as the x-process, is a set of naturally occurring nuclear reactions causing nucleosynthesis; it refers to the formation of chemical elements from the impact of cosmic rays on an object. Cosmic rays are highly ener ...
of
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
. 10Be accumulates at the
soil Soil, also commonly referred to as earth or dirt, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life. Some scientific definitions distinguish ''dirt'' from ''soil'' by restricting the former te ...
surface, where its relatively long
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
(1.36 million years) permits a long
residence time The residence time of a fluid parcel is the total time that the parcel has spent inside a control volume (e.g.: a chemical reactor, a lake, a human body). The residence time of a set of parcels is quantified in terms of the frequency distributi ...
before decaying to
boron Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the ''boron group'' it has th ...
-10. Thus, 10Be and its daughter products are used to examine natural
soil erosion Soil erosion is the denudation or wearing away of the upper layer of soil. It is a form of soil degradation. This natural process is caused by the dynamic activity of erosive agents, that is, water, ice (glaciers), snow, air (wind), plants, and ...
,
soil formation Soil formation, also known as pedogenesis, is the process of soil genesis as regulated by the effects of place, environment, and history. Biogeochemical processes act to both create and destroy order (anisotropy) within soils. These alterations l ...
and the development of lateritic soils, and as a
proxy Proxy may refer to: * Proxy or agent (law), a substitute authorized to act for another entity or a document which authorizes the agent so to act * Proxy (climate), a measured variable used to infer the value of a variable of interest in climate ...
for measurement of the variations in
solar activity Solar phenomena are natural phenomena which occur within the atmosphere of the Sun. These phenomena take many forms, including solar wind, radio wave flux, solar flares, coronal mass ejections, coronal heating and sunspots. These phenomena are ...
and the age of
ice core An ice core is a core sample that is typically removed from an ice sheet or a high mountain glacier. Since the ice forms from the incremental buildup of annual layers of snow, lower layers are older than upper ones, and an ice core contains ic ...
s. The production of 10Be is inversely proportional to solar activity, because increased
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sola ...
during periods of high solar activity decreases the flux of
galactic cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
s that reach the Earth. Nuclear explosions also form 10Be by the reaction of fast neutrons with 13C in the carbon dioxide in air. This is one of the indicators of past activity at
nuclear weapon test Nuclear weapons tests are experiments carried out to determine nuclear weapons' effectiveness, yield, and explosive capability. Testing nuclear weapons offers practical information about how the weapons function, how detonations are affected by ...
sites. The isotope 7Be (half-life 53 days) is also cosmogenic, and shows an atmospheric abundance linked to sunspots, much like 10Be. 8Be has a very short half-life of about 8 s that contributes to its significant cosmological role, as elements heavier than beryllium could not have been produced by nuclear fusion in the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
. This is due to the lack of sufficient time during the Big Bang's
nucleosynthesis Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
phase to produce carbon by the fusion of 4He nuclei and the very low concentrations of available beryllium-8. British
astronomer An astronomer is a scientist in the field of astronomy who focuses their studies on a specific question or field outside the scope of Earth. They observe astronomical objects such as stars, planets, natural satellite, moons, comets and galaxy, g ...
Sir
Fred Hoyle Sir Fred Hoyle FRS (24 June 1915 – 20 August 2001) was an English astronomer who formulated the theory of stellar nucleosynthesis and was one of the authors of the influential B2FH paper. He also held controversial stances on other sci ...
first showed that the energy levels of 8Be and 12C allow carbon production by the so-called
triple-alpha process The triple-alpha process is a set of nuclear fusion reactions by which three helium-4 nuclei (alpha particles) are transformed into carbon. Triple-alpha process in stars Helium accumulates in the cores of stars as a result of the proton–pro ...
in helium-fueled stars where more nucleosynthesis time is available. This process allows carbon to be produced in stars, but not in the Big Bang. Star-created carbon (the basis of
carbon-based life Carbon-based may refer to: * Biology * based on Carbon * Carbon-based life * Carbon chauvinism Carbon chauvinism is a neologism meant to disparage the assumption that the chemical processes of hypothetical extraterrestrial life must be constru ...
) is thus a component in the elements in the gas and dust ejected by
AGB star The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) l ...
s and
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
e (see also
Big Bang nucleosynthesis In physical cosmology, Big Bang nucleosynthesis (abbreviated BBN, also known as primordial nucleosynthesis) is the production of nuclei other than those of the lightest isotope of hydrogen ( hydrogen-1, 1H, having a single proton as a nucleu ...
), as well as the creation of all other elements with
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
s larger than that of carbon. The 2s electrons of beryllium may contribute to chemical bonding. Therefore, when 7Be decays by L-
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Thi ...
, it does so by taking electrons from its
atomic orbital In atomic theory and quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of finding any electron of an atom in any spe ...
s that may be participating in bonding. This makes its decay rate dependent to a measurable degree upon its chemical surroundings – a rare occurrence in nuclear decay. The shortest-lived known isotope of beryllium is 16Be, which decays through
neutron emission Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a nucleus. It occurs in the most neutron-rich/proton-deficient nuclides, and also from excited states of other nuclides as in photoneutron emission and ...
with a half-life of .Hammond, C. R. "Elements" in The exotic isotopes 11Be and 14Be are known to exhibit a
nuclear halo In nuclear physics, an atomic nucleus is called a halo nucleus or is said to have a nuclear halo when it has a core nucleus surrounded by a "halo" of orbiting protons or neutrons, which makes the radius of the nucleus appreciably larger than that ...
. This phenomenon can be understood as the nuclei of 11Be and 14Be have, respectively, 1 and 4 neutrons orbiting substantially outside the classical Fermi 'waterdrop' model of the nucleus.


Occurrence

The Sun has a concentration of 0.1
parts per billion In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, they ...
(ppb) of beryllium. Beryllium has a concentration of 2 to 6
parts per million In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, they ...
(ppm) in the Earth's crust. It is most concentrated in the soils, 6 ppm. Trace amounts of 9Be are found in the Earth's atmosphere. The concentration of beryllium in sea water is 0.2–0.6
parts per trillion In science and engineering, the parts-per notation is a set of pseudo-units to describe small values of miscellaneous dimensionless quantities, e.g. mole fraction or mass fraction. Since these fractions are quantity-per-quantity measures, they ...
. In stream water, however, beryllium is more abundant with a concentration of 0.1 ppb. Beryllium is found in over 100 minerals, but most are uncommon to rare. The more common beryllium containing minerals include:
bertrandite Bertrandite is a beryllium sorosilicate hydroxide mineral with composition: Be4Si2O7(OH)2. Bertrandite is a colorless to pale yellow orthorhombic mineral with a hardness of 6-7. It is commonly found in beryllium rich pegmatites and is in part an ...
(Be4Si2O7(OH)2),
beryl Beryl ( ) is a mineral composed of beryllium aluminium silicate with the chemical formula Be3Al2Si6O18. Well-known varieties of beryl include emerald and aquamarine. Naturally occurring, hexagonal crystals of beryl can be up to several mete ...
(Al2Be3Si6O18),
chrysoberyl The mineral or gemstone chrysoberyl is an aluminate of beryllium with the formula Be Al2 O4. The name chrysoberyl is derived from the Greek words χρυσός ''chrysos'' and βήρυλλος ''beryllos'', meaning "a gold-white spar". Despite ...
(Al2BeO4) and
phenakite Phenakite or phenacite is a fairly rare nesosilicate mineral consisting of beryllium orthosilicate, Be2 Si O4. Occasionally used as a gemstone, phenakite occurs as isolated crystals, which are rhombohedral with parallel-faced hemihedrism, and are ...
(Be2SiO4). Precious forms of beryl are aquamarine,
red beryl Red beryl, formerly known as bixbite and marketed as red emerald or scarlet emerald, is an extremely rare variety of beryl as well as one of the rarest minerals on Earth. The gem gets its red color from manganese ions embedded inside of beryllium ...
and
emerald Emerald is a gemstone and a variety of the mineral beryl (Be3Al2(SiO3)6) colored green by trace amounts of chromium or sometimes vanadium.Hurlbut, Cornelius S. Jr. and Kammerling, Robert C. (1991) ''Gemology'', John Wiley & Sons, New York, p ...
. The green color in gem-quality forms of beryl comes from varying amounts of chromium (about 2% for emerald). The two main ores of beryllium, beryl and bertrandite, are found in Argentina, Brazil, India, Madagascar, Russia and the United States. Total world reserves of beryllium ore are greater than 400,000 tonnes.


Production

The extraction of beryllium from its compounds is a difficult process due to its high affinity for oxygen at elevated temperatures, and its ability to reduce water when its oxide film is removed. Currently the United States, China and Kazakhstan are the only three countries involved in the industrial-scale extraction of beryllium. Kazakhstan produces beryllium from a concentrate stockpiled before the
breakup of the Soviet Union The dissolution of the Soviet Union, also negatively connoted as rus, Разва́л Сове́тского Сою́за, r=Razvál Sovétskogo Soyúza, ''Ruining of the Soviet Union''. was the process of internal disintegration within the Sov ...
around 1991. This resource has become nearly depleted by mid-2010s. Production of beryllium in Russia was halted in 1997, and is planned to be resumed in the 2020s. Beryllium is most commonly extracted from the mineral
beryl Beryl ( ) is a mineral composed of beryllium aluminium silicate with the chemical formula Be3Al2Si6O18. Well-known varieties of beryl include emerald and aquamarine. Naturally occurring, hexagonal crystals of beryl can be up to several mete ...
, which is either sintered using an extraction agent or melted into a soluble mixture. The sintering process involves mixing beryl with
sodium fluorosilicate Sodium fluorosilicate is a compound with the chemical formula Na2 iF6 Natural occurrence Sodium hexafluorosilicate occurs naturally as the rare mineral malladrite found within some volcanic fumaroles. Manufacturing Sodium fluorosilicate is made b ...
and soda at to form sodium fluoroberyllate, aluminium oxide and
silicon dioxide Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one ...
.
Beryllium hydroxide Beryllium hydroxide, Be(OH)2, is an amphoteric hydroxide, dissolving in both acids and alkalis. Industrially, it is produced as a by-product in the extraction of beryllium metal from the ores beryl and bertrandite. The natural pure beryllium hydro ...
is precipitated from a solution of sodium fluoroberyllate and
sodium hydroxide Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations and hydroxide anions . Sodium hydroxide is a highly caustic base and alkali ...
in water. Extraction of beryllium using the melt method involves grinding beryl into a powder and heating it to . The melt is quickly cooled with water and then reheated in concentrated
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formu ...
, mostly yielding
beryllium sulfate Beryllium sulfate normally encountered as the tetrahydrate, e(H2O)4O4 is a white crystalline solid. It was first isolated in 1815 by Jons Jakob Berzelius. Beryllium sulfate may be prepared by treating an aqueous solution of many beryllium salts ...
and
aluminium sulfate Aluminium sulfate is a salt with the chemical formula, formula aluminium, Al2sulfate, (SO4)3. It is soluble in water and is mainly used as a Coagulation (water treatment), coagulating agent (promoting particle collision by neutralizing charge) in ...
. Aqueous
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous was ...
is then used to remove the aluminium and sulfur, leaving beryllium hydroxide. Beryllium hydroxide created using either the sinter or melt method is then converted into
beryllium fluoride Beryllium fluoride is the inorganic compound with the formula Be F2. This white solid is the principal precursor for the manufacture of beryllium metal. Its structure resembles that of quartz, but BeF2 is highly soluble in water. Properties B ...
or
beryllium chloride Beryllium chloride is an inorganic compound with the formula BeCl2. It is a colourless, hygroscopic solid that dissolves well in many polar solvents. Its properties are similar to those of aluminium chloride, due to beryllium's diagonal relatio ...
. To form the fluoride, aqueous ammonium hydrogen fluoride is added to beryllium hydroxide to yield a precipitate of ammonium tetrafluoroberyllate, which is heated to to form beryllium fluoride. Heating the fluoride to with
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
forms finely divided beryllium, and additional heating to creates the compact metal. Heating beryllium hydroxide forms the oxide, which becomes beryllium chloride when combined with carbon and chlorine.
Electrolysis In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from n ...
of molten beryllium chloride is then used to obtain the metal.


Chemical properties

A beryllium atom has the electronic configuration e2s2. The predominant
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
of beryllium is +2; the beryllium atom has lost both of its valence electrons. Lower oxidation states have been found in, for example, bis(carbene) compounds. Beryllium's chemical behavior is largely a result of its small atomic and ionic radii. It thus has very high
ionization potential Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule ...
s and strong polarization while bonded to other atoms, which is why all of its compounds are
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms ...
. Its chemistry has similarities to that of aluminium, an example of a
diagonal relationship A diagonal relationship is said to exist between certain pairs of diagonally adjacent elements in the second and third periods (first 20 elements) of the periodic table. These pairs (lithium (Li) and magnesium (Mg), beryllium (Be) and aluminium ...
. At room temperature, the surface of beryllium forms a 1−10 nm-thick oxide passivation layer that prevents further reactions with air, except for gradual thickening of the oxide up to about 25 nm. When heated above about 500 °C, oxidation into the bulk metal progresses along grain boundaries. Once the metal is ignited in air by heating above the oxide melting point around 2500 °C, beryllium burns brilliantly, forming a mixture of
beryllium oxide Beryllium oxide (BeO), also known as beryllia, is an inorganic compound with the formula BeO. This colourless solid is a notable electrical insulator with a higher thermal conductivity than any other non-metal except diamond, and exceeds that of ...
and
beryllium nitride Beryllium nitride, Be3N2, is a nitride of beryllium. It can be prepared from the elements at high temperature (1100–1500 °C);Egon Wiberg, Arnold Frederick Holleman (2001) ''Inorganic Chemistry'', Elsevier unlike beryllium azide or BeN6, ...
. Beryllium dissolves readily in non-
oxidizing acid An oxidizing acid is a Brønsted acid that is a strong oxidizing agent. Most Brønsted acids can act as oxidizing agents, because the acidic proton can be reduced to hydrogen gas. Some acids contain other structures that act as stronger oxidizing ...
s, such as HCl and diluted H2SO4, but not in
nitric acid Nitric acid is the inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but older samples tend to be yellow cast due to decomposition into oxides of nitrogen. Most commercially available nitri ...
or water as this forms the oxide. This behavior is similar to that of aluminium metal. Beryllium also dissolves in alkali solutions. Binary compounds of beryllium(II) are polymeric in the solid state. BeF2 has a
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one ...
-like structure with corner-shared BeF4 tetrahedra. BeCl2 and BeBr2 have chain structures with edge-shared tetrahedra.
Beryllium oxide Beryllium oxide (BeO), also known as beryllia, is an inorganic compound with the formula BeO. This colourless solid is a notable electrical insulator with a higher thermal conductivity than any other non-metal except diamond, and exceeds that of ...
, BeO, is a white
refractory In materials science, a refractory material or refractory is a material that is resistant to decomposition by heat, pressure, or chemical attack, and retains strength and form at high temperatures. Refractories are polycrystalline, polyphase, ...
solid, which has the
wurtzite Wurtzite is a zinc and iron sulfide mineral with the chemical formula , a less frequently encountered Polymorphism (materials science), structural polymorph form of sphalerite. The iron content is variable up to eight percent.Palache, Charles, Har ...
crystal structure and a thermal conductivity as high as some metals. BeO is
amphoteric In chemistry, an amphoteric compound () is a molecule or ion that can react both as an acid and as a base. What exactly this can mean depends on which definitions of acids and bases are being used. One type of amphoteric species are amphipro ...
. Beryllium
sulfide Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. ''Sulfide'' also refers to chemical compounds lar ...
,
selenide A selenide is a chemical compound containing a selenium anion with oxidation number of −2 (Se2−), much as sulfur does in a sulfide. The chemistry of the selenides and sulfides is similar. Similar to sulfide, in aqueous solution, the selenide ion ...
and telluride are known, all having the
zincblende structure In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties of ...
.
Beryllium nitride Beryllium nitride, Be3N2, is a nitride of beryllium. It can be prepared from the elements at high temperature (1100–1500 °C);Egon Wiberg, Arnold Frederick Holleman (2001) ''Inorganic Chemistry'', Elsevier unlike beryllium azide or BeN6, ...
, Be3N2 is a high-melting-point compound which is readily hydrolyzed. Beryllium azide, BeN6 is known and beryllium phosphide, Be3P2 has a similar structure to Be3N2. A number of beryllium
boride A boride is a compound between boron and a less electronegative element, for example silicon boride (SiB3 and SiB6). The borides are a very large group of compounds that are generally high melting and are covalent more than ionic in nature. Some bo ...
s are known, such as Be5B, Be4B, Be2B, BeB2, BeB6 and BeB12.
Beryllium carbide Beryllium carbide, or Be2C, is a metal carbide. Similar to diamond, it is a very hard compound.Beryllium Carbide Info ...
, Be2C, is a refractory brick-red compound that reacts with water to give
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Eart ...
. No beryllium
silicide A silicide is a type of chemical compound that combines silicon and a (usually) more electropositive element. Silicon is more electropositive than carbon. Silicides are structurally closer to borides than to carbides. Similar to borides and carb ...
has been identified. The halides BeX2 (X = F, Cl, Br, I) have a linear monomeric molecular structure in the gas phase. Complexes of the halides are formed with one or more ligands donating at total of two pairs of electrons. Such compounds obey the
octet rule The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The rul ...
. Other 4-coordinate complexes such as the aqua-ion e(H2O)4sup>2+ also obey the octet rule.


Aqueous solutions

The aqueous solution chemistry of beryllium is the subject of a comprehensive review. Solutions of beryllium salts, such as
beryllium sulfate Beryllium sulfate normally encountered as the tetrahydrate, e(H2O)4O4 is a white crystalline solid. It was first isolated in 1815 by Jons Jakob Berzelius. Beryllium sulfate may be prepared by treating an aqueous solution of many beryllium salts ...
and
beryllium nitrate Beryllium nitrate is an inorganic compound with the idealized chemical formula Be(NO3)2. The formula suggests a salt, but, as for many beryllium compounds, the compound is highly covalent. Little of its chemistry is well known. "When added to ...
, are acidic because of hydrolysis of the e(H2O)4sup>2+ ion. The concentration of the first hydrolysis product, e(H2O)3(OH)sup>+, is less than 1% of the beryllium concentration. The most stable hydrolysis product is the trimeric ion e3(OH)3(H2O)6sup>3+.
Beryllium hydroxide Beryllium hydroxide, Be(OH)2, is an amphoteric hydroxide, dissolving in both acids and alkalis. Industrially, it is produced as a by-product in the extraction of beryllium metal from the ores beryl and bertrandite. The natural pure beryllium hydro ...
, Be(OH)2, is insoluble in water at pH 5 or more. Consequently, beryllium compounds are generally insoluble at biological pH. Because of this, inhalation of beryllium metal dust by people leads to the development of the fatal condition of
berylliosis Berylliosis, or chronic beryllium disease (CBD), is a chronic allergic-type lung response and chronic lung disease caused by exposure to beryllium and its compounds, a form of beryllium poisoning. It is distinct from acute beryllium poisoning, wh ...
. Be(OH)2 dissolves in strongly
alkaline In chemistry, an alkali (; from ar, القلوي, al-qaly, lit=ashes of the saltwort) is a base (chemistry), basic, ionic compound, ionic salt (chemistry), salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as ...
solutions. Beryllium(II) forms few complexes with monodentate ligands because the water molecules in the aquo-ion,
e(H_2O)_4 E, or e, is the fifth letter and the second vowel letter in the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''e'' (pronounced ); plur ...
are bound very strongly to the beryllium ion. Notable exceptions are the series of water-soluble complexes with the fluoride ion. :
e(H_2O)_4 E, or e, is the fifth letter and the second vowel letter in the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''e'' (pronounced ); plur ...
n F^- \leftrightharpoons Be
H_2O)_F_n H, or h, is the eighth letter in the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''aitch'' (pronounced , plural ''aitches''), or region ...
nH_2O
Beryllium(II) forms many complexes with bidentate ligands containing oxygen-donor atoms. The species e_3O(H_2PO_4)_6 is notable for having a 3-coordinate oxide ion at its center.
Basic beryllium acetate Basic beryllium acetate is the chemical compound with the formula Be4O(O2CCH3)6. This compound adopts a distinctive structure, but it has no applications and has been only lightly studied. It is a colourless solid that is soluble in organic solve ...
, Be_4 O(OAc)_6, has an oxide ion surrounded by a tetrahedron of beryllium atoms. With organic ligands, such as the
malonate The conjugate acids are in :Carboxylic acids. {{Commons category, Carboxylate ions, Carboxylate anions Carbon compounds Oxyanions ...
ion, the acid is de-protonated when forming the complex. The donor atoms are two oxygens. : H_2A
e(H_2O)_4 E, or e, is the fifth letter and the second vowel letter in the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''e'' (pronounced ); plur ...
\leftrightharpoons eA(H_2O)_2 2H^+ 2H_2O
:H_2A eA(H_2O)_2\leftrightharpoons
eA_2 Electronic Arts Inc. (EA) is an American video game company headquartered in Redwood City, California. Founded in May 1982 by Apple employee Trip Hawkins, the company was a pioneer of the early home computer game industry and promoted the ...
2H^+ 2H_2O
Formation of a complex is in competition with the metal ion-hydrolysis reaction and mixed complexes with both the anion and the hydroxide ion are also formed. For example, derivatives of the cyclic trimer are known, with a bidentate ligand replacing one or more pairs of water molecules. Ligands such as
EDTA Ethylenediaminetetraacetic acid (EDTA) is an aminopolycarboxylic acid with the formula H2N(CH2CO2H)2sub>2. This white, water-soluble solid is widely used to bind to iron (Fe2+/Fe3+) and calcium ions (Ca2+), forming water-soluble complexes eve ...
behave as dicarboxylic acids. Hydroxycarboxylic acids such as glycollic acid form rather weak, monodentate, complexes in solution in which the hydroxyl group remains intact. A hexamer, Na_4
e_6(OCH_2(O)O)_6 The Elephant 6 Recording Company is a loosely defined musical collective from the United States. Notable bands associated with the collective include the Apples in Stereo, Beulah (band), Beulah, Circulatory System (band), Circulatory System, Elf ...
, in which the hydroxyl groups are deprotonated was isolated, in the solid state, long ago. Aromatic di-hydroxy ligands form relatively strong complexes. For example, log K1 and log K2 values of 12.2 and 9.3 have been reported for complexes with tiron. There are many early reports of complexes with amino acids, but unfortunately they are not reliable as the concomitant hydrolysis reactions were not understood at the time of publication. Values for log β of ca. 6 to 7 have been reported. The degree of formation is small because of competition with hydrolysis reactions.


Organic chemistry

Organoberyllium chemistry is limited to academic research due to the cost and toxicity of beryllium, beryllium derivatives and reagents required for the introduction of beryllium, such as
beryllium chloride Beryllium chloride is an inorganic compound with the formula BeCl2. It is a colourless, hygroscopic solid that dissolves well in many polar solvents. Its properties are similar to those of aluminium chloride, due to beryllium's diagonal relatio ...
. Organometallic beryllium compounds are known to be highly reactive Examples of known organoberyllium compounds are ''dineopentylberyllium'', ''beryllocene'' (Cp2Be), ''diallylberyllium'' (by exchange reaction of diethyl beryllium with triallyl boron), bis(1,3-trimethylsilylallyl)beryllium and Be(mes)2. Ligands can also be aryls and alkynyls.


History

The mineral
beryl Beryl ( ) is a mineral composed of beryllium aluminium silicate with the chemical formula Be3Al2Si6O18. Well-known varieties of beryl include emerald and aquamarine. Naturally occurring, hexagonal crystals of beryl can be up to several mete ...
, which contains beryllium, has been used at least since the
Ptolemaic dynasty The Ptolemaic dynasty (; grc, Πτολεμαῖοι, ''Ptolemaioi''), sometimes referred to as the Lagid dynasty (Λαγίδαι, ''Lagidae;'' after Ptolemy I's father, Lagus), was a Macedonian Greek royal dynasty which ruled the Ptolemaic ...
of Egypt. In the first century CE, Roman naturalist
Pliny the Elder Gaius Plinius Secundus (AD 23/2479), called Pliny the Elder (), was a Roman author, naturalist and natural philosopher, and naval and army commander of the early Roman Empire, and a friend of the emperor Vespasian. He wrote the encyclopedic '' ...
mentioned in his encyclopedia '' Natural History'' that beryl and
emerald Emerald is a gemstone and a variety of the mineral beryl (Be3Al2(SiO3)6) colored green by trace amounts of chromium or sometimes vanadium.Hurlbut, Cornelius S. Jr. and Kammerling, Robert C. (1991) ''Gemology'', John Wiley & Sons, New York, p ...
("smaragdus") were similar. The
Papyrus Graecus Holmiensis The Papyrus Graecus Holmiensis (also known as the Stockholm papyrus) is a collection of craft recipes compiled in Egypt . It is written in Greek. The Stockholm papyrus has 154 recipes for dyeing, coloring gemstones, cleaning (purifying) pearls, and ...
, written in the third or fourth century CE, contains notes on how to prepare artificial emerald and beryl. Early analyses of emeralds and beryls by
Martin Heinrich Klaproth Martin Heinrich Klaproth (1 December 1743 – 1 January 1817) was a German chemist. He trained and worked for much of his life as an apothecary, moving in later life to the university. His shop became the second-largest apothecary in Berlin, and ...
,
Torbern Olof Bergman Torbern Olaf (Olof) Bergman (''KVO'') (20 March 17358 July 1784) was a Swedish chemist and mineralogist noted for his 1775 ''Dissertation on Elective Attractions'', containing the largest chemical affinity tables ever published. Bergman was the ...
,
Franz Karl Achard Franz Karl Achard (28 April 1753 – 20 April 1821) was a German (Prussian) chemist, geoscientist, physicist, and biologist. His principal discovery was the production of sugar from sugar beets. Life and work Achard was born in Berlin, the ...
, and Johann Jakob Bindheim always yielded similar elements, leading to the mistaken conclusion that both substances are aluminium silicates. Mineralogist
René Just Haüy René Just Haüy () FRS MWS FRSE (28 February 1743 – 1 June 1822) was a French priest and mineralogist, commonly styled the Abbé Haüy after he was made an honorary canon of Notre Dame. Due to his innovative work on crystal structure and hi ...
discovered that both crystals are geometrically identical, and he asked chemist
Louis-Nicolas Vauquelin Prof. Louis Nicolas Vauquelin FRS(For) H FRSE (16 May 1763 – 14 November 1829) was a French pharmacist and chemist. He was the discoverer of both chromium and beryllium. Early life Vauquelin was born at Saint-André-d'Hébertot in Normandy ...
for a chemical analysis. In a 1798 paper read before the
Institut de France The (; ) is a French learned society, grouping five , including the Académie Française. It was established in 1795 at the direction of the National Convention. Located on the Quai de Conti in the 6th arrondissement of Paris, the institute m ...
, Vauquelin reported that he found a new "earth" by dissolving
aluminium hydroxide Aluminium hydroxide, Al(OH)3, is found in nature as the mineral gibbsite (also known as hydrargillite) and its three much rarer polymorphs: bayerite, doyleite, and nordstrandite. Aluminium hydroxide is amphoteric, i.e., it has both basic an ...
from emerald and beryl in an additional
alkali In chemistry, an alkali (; from ar, القلوي, al-qaly, lit=ashes of the saltwort) is a basic, ionic salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as a base that dissolves in water. A solution of a ...
. The editors of the journal ''Annales de Chimie et de Physique'' named the new earth "glucine" for the sweet taste of some of its compounds. Klaproth preferred the name "beryllina" due to the fact that
yttria Yttrium oxide, also known as yttria, is Y2 O3. It is an air-stable, white solid substance. The thermal conductivity of yttrium oxide is 27 W/(m·K). Uses Phosphors Yttria is widely used to make Eu:YVO4 and Eu:Y2O3 phosphors that give the red ...
also formed sweet salts. The name "beryllium" was first used by Wöhler in 1828.
Friedrich Wöhler Friedrich Wöhler () FRS(For) HonFRSE (31 July 180023 September 1882) was a German chemist known for his work in inorganic chemistry, being the first to isolate the chemical elements beryllium and yttrium in pure metallic form. He was the firs ...
and Antoine Bussy independently isolated beryllium in 1828 by the
chemical reaction A chemical reaction is a process that leads to the IUPAC nomenclature for organic transformations, chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the pos ...
of metallic
potassium Potassium is the chemical element with the symbol K (from Neo-Latin ''kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosphe ...
with
beryllium chloride Beryllium chloride is an inorganic compound with the formula BeCl2. It is a colourless, hygroscopic solid that dissolves well in many polar solvents. Its properties are similar to those of aluminium chloride, due to beryllium's diagonal relatio ...
, as follows: :BeCl2 + 2 K → 2 KCl + Be Using an alcohol lamp, Wöhler heated alternating layers of beryllium chloride and potassium in a wired-shut platinum crucible. The above reaction immediately took place and caused the crucible to become white hot. Upon cooling and washing the resulting gray-black powder he saw that it was made of fine particles with a dark metallic luster. The highly reactive potassium had been produced by the
electrolysis In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from n ...
of its compounds, a process discovered 21 years before. The chemical method using potassium yielded only small grains of beryllium from which no ingot of metal could be cast or hammered. The direct electrolysis of a molten mixture of
beryllium fluoride Beryllium fluoride is the inorganic compound with the formula Be F2. This white solid is the principal precursor for the manufacture of beryllium metal. Its structure resembles that of quartz, but BeF2 is highly soluble in water. Properties B ...
and
sodium fluoride Sodium fluoride (NaF) is an inorganic compound with the formula . It is used in trace amounts in the fluoridation of drinking water, in toothpaste, in metallurgy, and as a flux. It is a colorless or white solid that is readily soluble in water. I ...
by
Paul Lebeau Paul Marie Alfred Lebeau (19 December 1868 – 18 November 1959) was a French chemist. He studied at the elite École supérieure de physique et de chimie industrielles de la ville de Paris (ESPCI). Together with his doctoral advisor Henri Mo ...
in 1898 resulted in the first pure (99.5 to 99.8%) samples of beryllium. However, industrial production started only after the First World War. The original industrial involvement included subsidiaries and scientists related to the Union Carbide and Carbon Corporation in Cleveland, Ohio, and
Siemens & Halske Siemens & Halske AG (or Siemens-Halske) was a German electrical engineering company that later became part of Siemens. It was founded on 12 October 1847 as ''Telegraphen-Bauanstalt von Siemens & Halske'' by Werner von Siemens and Johann Ge ...
AG in Berlin. In the US, the process was ruled by Hugh S. Cooper, director of The Kemet Laboratories Company. In Germany, the first commercially successful process for producing beryllium was developed in 1921 by
Alfred Stock Alfred Stock (July 16, 1876 – August 12, 1946) was a German inorganic chemist. He did pioneering research on the hydrides of boron and silicon, coordination chemistry, mercury, and mercury poisoning. The German Chemical Society's Alfred-Stoc ...
and
Hans Goldschmidt Johannes Wilhelm "Hans" Goldschmidt (18 January 1861 – 21 May 1923) was a German chemist notable as the discoverer of the Thermite reaction. He was also co-owner of the Chemische Fabrik Th. Goldschmidt, as of 1911 Th. Goldschmidt AG (later to be ...
. A sample of beryllium was bombarded with alpha rays from the decay of
radium Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather t ...
in a 1932 experiment by
James Chadwick Sir James Chadwick, (20 October 1891 – 24 July 1974) was an English physicist who was awarded the 1935 Nobel Prize in Physics for his discovery of the neutron in 1932. In 1941, he wrote the final draft of the MAUD Report, which inspi ...
that uncovered the existence of the
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
. This same method is used in one class of radioisotope-based laboratory
neutron source A neutron source is any device that emits neutrons, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear p ...
s that produce 30 neutrons for every million α particles. Beryllium production saw a rapid increase during World War II, due to the rising demand for hard beryllium-copper alloys and phosphors for
fluorescent light A fluorescent lamp, or fluorescent tube, is a low-pressure mercury-vapor gas-discharge lamp that uses fluorescence to produce visible light. An electric current in the gas excites mercury vapor, which produces short-wave ultraviolet lig ...
s. Most early fluorescent lamps used
zinc orthosilicate Willemite is a zinc silicate mineral () and a minor ore of zinc. It is highly fluorescent (green) under shortwave ultraviolet light. It occurs in a variety of colors in daylight, in fibrous masses and apple-green gemmy masses. Troostite is a vari ...
with varying content of beryllium to emit greenish light. Small additions of magnesium
tungstate In chemistry, a tungstate is a compound that contains an oxyanion of tungsten or is a mixed oxide containing tungsten. The simplest tungstate ion is , "orthotungstate". Many other tungstates belong to a large group of polyatomic ions that are ...
improved the blue part of the spectrum to yield an acceptable white light. Halophosphate-based phosphors replaced beryllium-based phosphors after beryllium was found to be toxic. Electrolysis of a mixture of
beryllium fluoride Beryllium fluoride is the inorganic compound with the formula Be F2. This white solid is the principal precursor for the manufacture of beryllium metal. Its structure resembles that of quartz, but BeF2 is highly soluble in water. Properties B ...
and
sodium fluoride Sodium fluoride (NaF) is an inorganic compound with the formula . It is used in trace amounts in the fluoridation of drinking water, in toothpaste, in metallurgy, and as a flux. It is a colorless or white solid that is readily soluble in water. I ...
was used to isolate beryllium during the 19th century. The metal's high melting point makes this process more energy-consuming than corresponding processes used for the
alkali metals The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K),The symbols Na and K for sodium and potassium are derived from their Latin names, ''natrium'' and ''kalium''; these are still the origins of the names ...
. Early in the 20th century, the production of beryllium by the thermal decomposition of beryllium iodide was investigated following the success of a similar process for the production of
zirconium Zirconium is a chemical element with the symbol Zr and atomic number 40. The name ''zirconium'' is taken from the name of the mineral zircon, the most important source of zirconium. The word is related to Persian '' zargun'' (zircon; ''zar-gun'', ...
, but this process proved to be uneconomical for volume production. Pure beryllium metal did not become readily available until 1957, even though it had been used as an alloying metal to harden and toughen copper much earlier. Beryllium could be produced by reducing beryllium compounds such as
beryllium chloride Beryllium chloride is an inorganic compound with the formula BeCl2. It is a colourless, hygroscopic solid that dissolves well in many polar solvents. Its properties are similar to those of aluminium chloride, due to beryllium's diagonal relatio ...
with metallic potassium or sodium. Currently, most beryllium is produced by reducing beryllium fluoride with
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
. The price on the American market for vacuum-cast beryllium ingots was about $338 per pound ($745 per kilogram) in 2001. Between 1998 and 2008, the world's production of beryllium had decreased from 343 to about 200
tonne The tonne ( or ; symbol: t) is a unit of mass equal to 1000  kilograms. It is a non-SI unit accepted for use with SI. It is also referred to as a metric ton to distinguish it from the non-metric units of the short ton ( United State ...
s. It then increased to 230 tonnes by 2018, of which 170 tonnes came from the United States.


Etymology

Named after
beryl Beryl ( ) is a mineral composed of beryllium aluminium silicate with the chemical formula Be3Al2Si6O18. Well-known varieties of beryl include emerald and aquamarine. Naturally occurring, hexagonal crystals of beryl can be up to several mete ...
, a semiprecious mineral, from which it was first isolated.


Applications


Radiation windows

Because of its low atomic number and very low absorption for X-rays, the oldest and still one of the most important applications of beryllium is in radiation windows for
X-ray tube An X-ray tube is a vacuum tube that converts electrical input power into X-rays. The availability of this controllable source of X-rays created the field of radiography, the imaging of partly opaque objects with penetrating radiation. In contrast ...
s. Extreme demands are placed on purity and cleanliness of beryllium to avoid artifacts in the X-ray images. Thin beryllium foils are used as radiation windows for X-ray detectors, and the extremely low absorption minimizes the heating effects caused by high intensity, low energy X-rays typical of
synchrotron A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed p ...
radiation. Vacuum-tight windows and beam-tubes for radiation experiments on synchrotrons are manufactured exclusively from beryllium. In scientific setups for various X-ray emission studies (e.g.,
energy-dispersive X-ray spectroscopy Energy-dispersive X-ray spectroscopy (EDS, EDX, EDXS or XEDS), sometimes called energy dispersive X-ray analysis (EDXA or EDAX) or energy dispersive X-ray microanalysis (EDXMA), is an analytical technique used for the elemental analysis or chemi ...
) the sample holder is usually made of beryllium because its emitted X-rays have much lower energies (≈100 eV) than X-rays from most studied materials. Low
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
also makes beryllium relatively transparent to energetic
particles In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from s ...
. Therefore, it is used to build the beam pipe around the collision region in
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
setups, such as all four main detector experiments at the
Large Hadron Collider The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundred ...
( ALICE,
ATLAS An atlas is a collection of maps; it is typically a bundle of maps of Earth or of a region of Earth. Atlases have traditionally been bound into book form, but today many atlases are in multimedia formats. In addition to presenting geographic ...
,
CMS CMS may refer to: Computing * Call management system * CMS-2 (programming language), used by the United States Navy * Code Morphing Software, a technology used by Transmeta * Collection management system for a museum collection * Color manag ...
,
LHCb The LHCb (Large Hadron Collider beauty) experiment is one of eight particle physics detector experiments collecting data at the Large Hadron Collider at CERN. LHCb is a specialized b-physics experiment, designed primarily to measure the paramet ...
), the
Tevatron The Tevatron was a circular particle accelerator (active until 2011) in the United States, at the Fermi National Accelerator Laboratory (also known as ''Fermilab''), east of Batavia, Illinois, and is the second highest energy particle collider ...
and at
SLAC SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a United States Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the U.S. Departme ...
. The low density of beryllium allows collision products to reach the surrounding detectors without significant interaction, its stiffness allows a powerful vacuum to be produced within the pipe to minimize interaction with gases, its thermal stability allows it to function correctly at temperatures of only a few degrees above
absolute zero Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibration ...
, and its
diamagnetic Diamagnetic materials are repelled by a magnetic field; an applied magnetic field creates an induced magnetic field in them in the opposite direction, causing a repulsive force. In contrast, paramagnetic and ferromagnetic materials are attracted ...
nature keeps it from interfering with the complex multipole magnet systems used to steer and
focus Focus, or its plural form foci may refer to: Arts * Focus or Focus Festival, former name of the Adelaide Fringe arts festival in South Australia Film *''Focus'', a 1962 TV film starring James Whitmore * ''Focus'' (2001 film), a 2001 film based ...
the
particle beam A particle beam is a stream of charged or neutral particles. In particle accelerators, these particles can move with a velocity close to the speed of light. There is a difference between the creation and control of charged particle beams and neu ...
s.


Mechanical applications

Because of its stiffness, light weight and dimensional stability over a wide temperature range, beryllium metal is used for lightweight structural components in the defense and
aerospace Aerospace is a term used to collectively refer to the atmosphere and outer space. Aerospace activity is very diverse, with a multitude of commercial, industrial and military applications. Aerospace engineering consists of aeronautics and astrona ...
industries in high-speed
aircraft An aircraft is a vehicle that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or by using the dynamic lift of an airfoil, or in a few cases the downward thrust from jet engines ...
,
guided missile In military terminology, a missile is a guided airborne ranged weapon capable of self-propelled flight usually by a jet engine or rocket motor. Missiles are thus also called guided missiles or guided rockets (when a previously unguided rocket ...
s,
spacecraft A spacecraft is a vehicle or machine designed to fly in outer space. A type of artificial satellite, spacecraft are used for a variety of purposes, including communications, Earth observation, meteorology, navigation, space colonization, p ...
, and
satellite A satellite or artificial satellite is an object intentionally placed into orbit in outer space. Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioisotope ...
s, including the James Webb Space Telescope. Several
liquid-fuel rocket A liquid-propellant rocket or liquid rocket utilizes a rocket engine that uses liquid rocket propellant, liquid propellants. Liquids are desirable because they have a reasonably high density and high Specific impulse, specific impulse (''I''sp). T ...
s have used rocket nozzles made of pure beryllium. Beryllium powder was itself studied as a
rocket fuel Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical ...
, but this use has never materialized. A small number of extreme high-end
bicycle frame A bicycle frame is the main component of a bicycle, onto which wheels and other components are fitted. The modern and most common frame design for an upright bicycle is based on the safety bicycle, and consists of two triangles: a main triangl ...
s have been built with beryllium. From 1998 to 2000, the
McLaren McLaren Racing Limited is a British motor racing team based at the McLaren Technology Centre in Woking, Surrey, England. McLaren is best known as a Formula One constructor, the second oldest active team, and the second most successful Formul ...
Formula One Formula One (also known as Formula 1 or F1) is the highest class of international racing for open-wheel single-seater formula racing cars sanctioned by the Fédération Internationale de l'Automobile (FIA). The World Drivers' Championship, ...
team used
Mercedes-Benz Mercedes-Benz (), commonly referred to as Mercedes and sometimes as Benz, is a German luxury and commercial vehicle automotive brand established in 1926. Mercedes-Benz AG (a Mercedes-Benz Group subsidiary established in 2019) is headquartere ...
engines with beryllium-aluminium-
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility, ...
pistons. The use of beryllium engine components was banned following a protest by
Scuderia Ferrari Scuderia Ferrari Società per Azioni, S.p.A. () is the racing division of luxury Italian auto manufacturer Ferrari and the racing team that competes in Formula One racing. The team is also known by the nickname "The Prancing Horse", in refere ...
. Mixing about 2.0% beryllium into
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
forms an
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility, ...
called beryllium copper that is six times stronger than copper alone. Beryllium alloys are used in many applications because of their combination of elasticity, high
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allow ...
and
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
, high strength and
hardness In materials science, hardness (antonym: softness) is a measure of the resistance to localized plastic deformation induced by either mechanical indentation or abrasion. In general, different materials differ in their hardness; for example hard ...
, nonmagnetic properties, as well as good
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
and fatigue resistance. These applications include non-sparking tools that are used near flammable gases ( beryllium nickel), in springs and membranes (beryllium nickel and beryllium iron) used in surgical instruments and high temperature devices. As little as 50 parts per million of beryllium alloyed with liquid
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
leads to a significant increase in oxidation resistance and decrease in flammability. The high elastic stiffness of beryllium has led to its extensive use in precision instrumentation, e.g. in
inertial guidance An inertial navigation system (INS) is a navigation device that uses motion sensors ( accelerometers), rotation sensors ( gyroscopes) and a computer to continuously calculate by dead reckoning the position, the orientation, and the velocity ...
systems and in the support mechanisms for optical systems. Beryllium-copper alloys were also applied as a hardening agent in " Jason pistols", which were used to strip the paint from the hulls of ships. Beryllium was also used for cantilevers in high performance phonograph cartridge styli, where its extreme stiffness and low density allowed for tracking weights to be reduced to 1 gram, yet still track high frequency passages with minimal distortion. An earlier major application of beryllium was in
brake A brake is a mechanical device that inhibits motion by absorbing energy from a moving system. It is used for slowing or stopping a moving vehicle, wheel, axle, or to prevent its motion, most often accomplished by means of friction. Background ...
s for military
airplane An airplane or aeroplane (informally plane) is a fixed-wing aircraft that is propelled forward by thrust from a jet engine, propeller, or rocket engine. Airplanes come in a variety of sizes, shapes, and wing configurations. The broad spe ...
s because of its hardness, high melting point, and exceptional ability to dissipate heat. Environmental considerations have led to substitution by other materials. To reduce costs, beryllium can be
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility, ...
ed with significant amounts of
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
, resulting in the AlBeMet alloy (a trade name). This blend is cheaper than pure beryllium, while still retaining many desirable properties.


Mirrors

Beryllium
mirror A mirror or looking glass is an object that Reflection (physics), reflects an image. Light that bounces off a mirror will show an image of whatever is in front of it, when focused through the lens of the eye or a camera. Mirrors reverse the ...
s are of particular interest. Large-area mirrors, frequently with a honeycomb support structure, are used, for example, in
meteorological satellite A weather satellite or meteorological satellite is a type of Earth observation satellite that is primarily used to monitor the weather and climate of the Earth. Satellites can be polar orbiting (covering the entire Earth asynchronously), or g ...
s where low weight and long-term dimensional stability are critical. Smaller beryllium mirrors are used in optical guidance systems and in
fire-control system A fire-control system (FCS) is a number of components working together, usually a gun data computer, a director, and radar, which is designed to assist a ranged weapon system to target, track, and hit a target. It performs the same task as a ...
s, e.g. in the German-made
Leopard 1 The Leopard 1 (also styled Leopard I, before the Leopard 2 simply known as Leopard) is a main battle tank designed and produced by Porsche in West Germany that first entered service in 1965. Developed in an era when HEAT warheads were thought t ...
and Leopard 2
main battle tank A main battle tank (MBT), also known as a battle tank or universal tank, is a tank that fills the role of armor-protected direct fire and maneuver in many modern armies. Cold War-era development of more powerful engines, better suspension sys ...
s. In these systems, very rapid movement of the mirror is required which again dictates low mass and high rigidity. Usually the beryllium mirror is coated with hard
electroless nickel plating Electroless nickel-phosphorus plating is a chemical process that deposits an even layer of nickel-phosphorus alloy on the surface of a solid substrate, like metal or plastic. The process involves dipping the substrate in a water solution containi ...
which can be more easily polished to a finer optical finish than beryllium. In some applications, though, the beryllium blank is polished without any coating. This is particularly applicable to
cryogenic In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th IIR International Congress of Refrigeration (held in Washington DC in 1971) endorsed a universal definition of “cryogenics” and “cr ...
operation where thermal expansion mismatch can cause the coating to buckle. The James Webb Space Telescope has 18 hexagonal beryllium sections for its mirrors, each plated with a thin layer of gold. Because JWST will face a temperature of 33 K, the mirror is made of gold-plated beryllium, capable of handling extreme cold better than glass. Beryllium contracts and deforms less than glass – and remains more uniform – in such temperatures. For the same reason, the optics of the Spitzer Space Telescope are entirely built of beryllium metal.


Magnetic applications

Beryllium is non-magnetic. Therefore, tools fabricated out of beryllium-based materials are used by naval or military
explosive ordnance disposal Bomb disposal is an explosives engineering profession using the process by which hazardous explosive devices are rendered safe. ''Bomb disposal'' is an all-encompassing term to describe the separate, but interrelated functions in the milit ...
teams for work on or near
naval mine A naval mine is a self-contained explosive device placed in water to damage or destroy surface ships or submarines. Unlike depth charges, mines are deposited and left to wait until they are triggered by the approach of, or contact with, any ...
s, since these mines commonly have magnetic fuzes. They are also found in maintenance and construction materials near
magnetic resonance imaging Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio wave ...
(MRI) machines because of the high magnetic fields generated. In the fields of
radio communication Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmit ...
s and powerful (usually military)
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, w ...
s, hand tools made of beryllium are used to tune the highly magnetic
klystron A klystron is a specialized linear-beam vacuum tube, invented in 1937 by American electrical engineers Russell and Sigurd Varian,Pond, Norman H. "The Tube Guys". Russ Cochran, 2008 p.31-40 which is used as an amplifier for high radio frequen ...
s,
magnetron The cavity magnetron is a high-power vacuum tube used in early radar systems and currently in microwave ovens and linear particle accelerators. It generates microwaves using the interaction of a stream of electrons with a magnetic field while ...
s,
traveling wave tube A traveling-wave tube (TWT, pronounced "twit") or traveling-wave tube amplifier (TWTA, pronounced "tweeta") is a specialized vacuum tube that is used in electronics to amplify radio frequency (RF) signals in the microwave range. The TWT belongs t ...
s, etc., that are used for generating high levels of
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ran ...
power in the
transmitter In electronics and telecommunications, a radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna (radio), antenna. The transmitter itself generates a radio frequency alternating current, which i ...
s.


Nuclear applications

Thin plates or foils of beryllium are sometimes used in
nuclear weapon design Nuclear weapon designs are physical, chemical, and engineering arrangements that cause the physics package of a nuclear weapon to detonate. There are three existing basic design types: * pure fission weapons, the simplest and least technically ...
s as the very outer layer of the
plutonium pit Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits ...
s in the primary stages of
thermonuclear bomb A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lowe ...
s, placed to surround the
fissile In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be typ ...
material. These layers of beryllium are good "pushers" for the implosion of the
plutonium-239 Plutonium-239 (239Pu or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main ...
, and they are good
neutron reflector A neutron reflector is any material that reflects neutrons. This refers to elastic scattering rather than to a specular reflection. The material may be graphite, beryllium, steel, tungsten carbide, gold, or other materials. A neutron reflector ...
s, just as in beryllium-moderated
nuclear reactors A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nu ...
. Beryllium is also commonly used in some
neutron source A neutron source is any device that emits neutrons, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear p ...
s in laboratory devices in which relatively few neutrons are needed (rather than having to use a nuclear reactor, or a
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
-powered
neutron generator Neutron generators are neutron source devices which contain compact linear particle accelerators and that produce neutrons by fusing isotopes of hydrogen together. The fusion reactions take place in these devices by accelerating either deu ...
). For this purpose, a target of beryllium-9 is bombarded with energetic alpha particles from a
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
such as
polonium Polonium is a chemical element with the symbol Po and atomic number 84. Polonium is a chalcogen. A rare and highly radioactive metal with no stable isotopes, polonium is chemically similar to selenium and tellurium, though its metallic character ...
-210,
radium Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather t ...
-226,
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
-238, or
americium Americium is a synthetic radioactive chemical element with the symbol Am and atomic number 95. It is a transuranic member of the actinide series, in the periodic table located under the lanthanide element europium, and thus by analogy was na ...
-241. In the nuclear reaction that occurs, a beryllium nucleus is transmuted into carbon-12, and one free neutron is emitted, traveling in about the same direction as the alpha particle was heading. Such
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an at ...
driven beryllium neutron sources, named "urchin" neutron initiators, were used in some early
atomic bomb A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission bomb) or a combination of fission and fusion reactions (thermonuclear bomb), producing a nuclear explosion. Both bomb ...
s. Neutron sources in which beryllium is bombarded with
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s from a
gamma decay A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically sh ...
radioisotope, are also used to produce laboratory neutrons. Beryllium is also used in fuel fabrication for CANDU reactors. The fuel elements have small appendages that are resistance brazed to the fuel cladding using an induction brazing process with Be as the braze filler material. Bearing pads are brazed in place to prevent contact between the fuel bundle and the pressure tube containing it, and inter-element spacer pads are brazed on to prevent element to element contact. Beryllium is also used at the
Joint European Torus The Joint European Torus, or JET, is an operational Magnetic confinement fusion, magnetically confined Plasma (physics), plasma physics experiment, located at Culham Centre for Fusion Energy in Oxfordshire, United Kingdom, UK. Based on a tokamak ...
nuclear-fusion research laboratory, and it will be used in the more advanced ITER to condition the components which face the plasma. Beryllium has also been proposed as a
cladding Cladding is an outer layer of material covering another. It may refer to the following: *Cladding (boiler), the layer of insulation and outer wrapping around a boiler shell *Cladding (construction), materials applied to the exterior of buildings ...
material for
nuclear fuel rod Nuclear fuel is material used in nuclear power stations to produce heat to power turbines. Heat is created when nuclear fuel undergoes nuclear fission. Most nuclear fuels contain heavy fissile actinide elements that are capable of undergoin ...
s, because of its good combination of mechanical, chemical, and nuclear properties.
Beryllium fluoride Beryllium fluoride is the inorganic compound with the formula Be F2. This white solid is the principal precursor for the manufacture of beryllium metal. Its structure resembles that of quartz, but BeF2 is highly soluble in water. Properties B ...
is one of the constituent salts of the eutectic salt mixture
FLiBe FLiBe is a molten salt made from a mixture of lithium fluoride (LiF) and beryllium fluoride (BeF2). It is both a nuclear reactor coolant and solvent for fertile or fissile material. It served both purposes in the Molten-Salt Reactor Experim ...
, which is used as a solvent, moderator and coolant in many hypothetical
molten salt reactor A molten salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a molten salt mixture. Only two MSRs have ever operated, both research reactors in the United States. The 1950's ...
designs, including the
liquid fluoride thorium reactor The liquid fluoride thorium reactor (LFTR; often pronounced ''lifter'') is a type of molten salt reactor. LFTRs use the thorium fuel cycle with a fluoride-based, molten, liquid salt for fuel. In a typical design, the liquid is pumped between a ...
(LFTR).


Acoustics

The low weight and high rigidity of beryllium make it useful as a material for high-frequency
speaker driver An electrodynamic speaker driver, often called simply a speaker driver when the type is implicit, is an individual transducer that converts an electrical audio signal to sound waves. While the term is sometimes used interchangeably with the ...
s. Because beryllium is expensive (many times more than
titanium Titanium is a chemical element with the symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in ...
), hard to shape due to its brittleness, and toxic if mishandled, beryllium
tweeter A tweeter or treble speaker is a special type of loudspeaker (usually dome, inverse dome or horn-type) that is designed to produce high audio frequencies, typically deliver high frequencies up to 100 kHz. The name is derived from the high ...
s are limited to high-end home,
pro audio Professional audio, abbreviated as pro audio, refers to both an activity and a category of high quality, studio-grade audio equipment. Typically it encompasses sound recording, sound reinforcement system setup and audio mixing, and music produc ...
, and public address applications. Some high-fidelity products have been fraudulently claimed to be made of the material. Some high-end phonograph cartridges used beryllium cantilevers to improve tracking by reducing mass.


Electronic

Beryllium is a p-type
dopant A dopant, also called a doping agent, is a trace of impurity element that is introduced into a chemical material to alter its original electrical or optical properties. The amount of dopant necessary to cause changes is typically very low. When ...
in III-V compound semiconductors. It is widely used in materials such as
GaAs Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monolithic microwave integrated circui ...
, AlGaAs,
InGaAs Indium gallium arsenide (InGaAs) (alternatively gallium indium arsenide, GaInAs) is a ternary alloy (chemical compound) of indium arsenide (InAs) and gallium arsenide (GaAs). Indium and gallium are ( group III) elements of the periodic table wh ...
and
InAlAs Aluminium indium arsenide, also indium aluminium arsenide or AlInAs ( Alx In1−x As), is a semiconductor material with very nearly the same lattice constant as GaInAs, but a larger bandgap. The ''x'' in the formula above is a number between 0 and 1 ...
grown by
molecular beam epitaxy Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors, and it is considered one of the fundamental tools for the devel ...
(MBE). Cross-rolled beryllium sheet is an excellent structural support for
printed circuit board A printed circuit board (PCB; also printed wiring board or PWB) is a medium used in Electrical engineering, electrical and electronic engineering to connect electronic components to one another in a controlled manner. It takes the form of a L ...
s in
surface-mount technology Surface-mount technology (SMT), originally called planar mounting, is a method in which the electrical components are mounted directly onto the surface of a printed circuit board (PCB). An electrical component mounted in this manner is referred ...
. In critical electronic applications, beryllium is both a structural support and heat sink. The application also requires a coefficient of
thermal expansion Thermal expansion is the tendency of matter to change its shape, area, volume, and density in response to a change in temperature, usually not including phase transitions. Temperature is a monotonic function of the average molecular kinetic ...
that is well matched to the alumina and glass-reinforced plastic, polyimide-glass Substrate (materials science), substrates. The beryllium-beryllium oxide metal matrix composite, composite "E-Materials" have been specially designed for these electronic applications and have the additional advantage that the thermal expansion coefficient can be tailored to match diverse substrate materials.
Beryllium oxide Beryllium oxide (BeO), also known as beryllia, is an inorganic compound with the formula BeO. This colourless solid is a notable electrical insulator with a higher thermal conductivity than any other non-metal except diamond, and exceeds that of ...
is useful for many applications that require the combined properties of an electrical insulator and an excellent heat conductor, with high strength and hardness, and a very high melting point. Beryllium oxide is frequently used as an insulator base plate in power semiconductor device, high-power transistors in radio frequency
transmitter In electronics and telecommunications, a radio transmitter or just transmitter is an electronic device which produces radio waves with an antenna (radio), antenna. The transmitter itself generates a radio frequency alternating current, which i ...
s for telecommunications. Beryllium oxide is also being studied for use in increasing the
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
of uranium dioxide nuclear fuel pellets. Beryllium compounds were used in
fluorescent light A fluorescent lamp, or fluorescent tube, is a low-pressure mercury-vapor gas-discharge lamp that uses fluorescence to produce visible light. An electric current in the gas excites mercury vapor, which produces short-wave ultraviolet lig ...
ing tubes, but this use was discontinued because of the disease
berylliosis Berylliosis, or chronic beryllium disease (CBD), is a chronic allergic-type lung response and chronic lung disease caused by exposure to beryllium and its compounds, a form of beryllium poisoning. It is distinct from acute beryllium poisoning, wh ...
which developed in the workers who were making the tubes.


Healthcare

Beryllium is a component of several Dental material, dental alloys.


Toxicity and safety


Biological effects

Approximately 35 micrograms of beryllium is found in the average human body, an amount not considered harmful. Beryllium is chemically similar to
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
and therefore can displace it from enzymes, which causes them to malfunction. Because Be2+ is a highly charged and small ion, it can easily get into many tissues and cells, where it specifically targets cell nuclei, inhibiting many enzymes, including those used for synthesizing DNA. Its toxicity is exacerbated by the fact that the body has no means to control beryllium levels, and once inside the body the beryllium cannot be removed.


Inhalation

Chronic
berylliosis Berylliosis, or chronic beryllium disease (CBD), is a chronic allergic-type lung response and chronic lung disease caused by exposure to beryllium and its compounds, a form of beryllium poisoning. It is distinct from acute beryllium poisoning, wh ...
is a pulmonary and systemic circulation, systemic granulomatous disease caused by inhalation of dust or fumes contaminated with beryllium; either large amounts over a short time or small amounts over a long time can lead to this ailment. Symptoms of the disease can take up to five years to develop; about a third of patients with it die and the survivors are left disabled. The International Agency for Research on Cancer (IARC) lists beryllium and beryllium compounds as List of IARC Group 1 carcinogens, Category 1 carcinogens.


Occupational exposure

In the US, the Occupational Safety and Health Administration (OSHA) has designated a permissible exposure limit (PEL) for beryllium and beryllium compounds of 0.2 µg/m3 as an 8-hour time-weighted average (TWA) and 2.0 µg/m3 as a short-term exposure limit over a sampling period of 15 minutes. The National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit (REL) upper-bound threshold of 0.5 µg/m3. The IDLH (immediately dangerous to life and health) value is 4 mg/m3. The toxicity of beryllium is on par with other toxic metalloids/metals, such as arsenic and mercury (element), mercury. Exposure to beryllium in the workplace can lead to a sensitization immune response and can over time develop Berylliosis, chronic beryllium disease (CBD). The National Institute for Occupational Safety and Health (NIOSH) in the United States researches these effects in collaboration with a major manufacturer of beryllium products. NIOSH also conducts genetic research on sensitization and CBD, independently of this collaboration. Acute beryllium disease in the form of chemical pneumonitis was first reported in Europe in 1933 and in the United States in 1943. A survey found that about 5% of workers in plants manufacturing fluorescent lamps in 1949 in the United States had beryllium-related lung diseases. Chronic berylliosis resembles sarcoidosis in many respects, and the differential diagnosis is often difficult. It killed some early workers in nuclear weapons design, such as Herbert L. Anderson. Beryllium may be found in coal slag. When the slag is formulated into an abrasive agent for blasting paint and rust from hard surfaces, the beryllium can become airborne and become a source of exposure.Newport News Shipbuilding Workers Face a Hidden Toxin
, Daily Press (Virginia), Michael Welles Shapiro, 31 August 2013
Although the use of beryllium compounds in fluorescent lighting tubes was discontinued in 1949, potential for exposure to beryllium exists in the nuclear and aerospace industries and in the refining of beryllium metal and melting of beryllium-containing alloys, the manufacturing of electronic devices, and the handling of other beryllium-containing material.


Detection

Early researchers undertook the highly hazardous practice of identifying beryllium and its various compounds from its sweet taste. Identification is now performed using safe modern diagnostics techniques. A successful test for beryllium in air and on surfaces has been developed and published as an international voluntary consensus standard ASTM D7202. The procedure uses dilute ammonium bifluoride for dissolution and fluorescence detection with beryllium bound to sulfonated hydroxybenzoquinoline, allowing up to 100 times more sensitive detection than the recommended limit for beryllium concentration in the workplace. Fluorescence increases with increasing beryllium concentration. The new procedure has been successfully tested on a variety of surfaces and is effective for the dissolution and detection of refractory beryllium oxide and siliceous beryllium in minute concentrations (ASTM D7458). The NIOSH Manual of Analytical Methods contains methods for measuring occupational exposures to beryllium.


References


Cited sources

* * *


Further reading

* * Mroz MM, Balkissoon R, Newman LS. "Beryllium". In: Bingham E, Cohrssen B, Powell C (eds.) ''Patty's Toxicology'', Fifth Edition. New York: John Wiley & Sons 2001, 177–220. * Walsh, KA
''Beryllium Chemistry and Processing''
Vidal, EE. et al. Eds. 2009, Materials Park, OH:ASM International.
Beryllium Lymphocyte Proliferation Testing (BeLPT).
DOE Specification 1142–2001. Washington, DC: U.S. Department of Energy, 2001.


External links


ATSDR Case Studies in Environmental Medicine: Beryllium Toxicity
U.S. Department of Health and Human Services
It's Elemental – Beryllium
* MSDS
ESPI Metals


at ''The Periodic Table of Videos'' (University of Nottingham)
National Institute for Occupational Safety and Health – Beryllium Page

National Supplemental Screening Program (Oak Ridge Associated Universities)

Historic Price of Beryllium in USA
{{portal bar, Chemistry Beryllium, Chemical elements Alkaline earth metals Neutron moderators Nuclear materials IARC Group 1 carcinogens Occupational safety and health Reducing agents Chemical elements with hexagonal close-packed structure