Apollonian network
   HOME

TheInfoList



OR:

In
combinatorial mathematics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many a ...
, an Apollonian network is an
undirected graph In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called '' ve ...
formed by a process of recursively subdividing a triangle into three smaller triangles. Apollonian networks may equivalently be defined as the
planar Planar is an adjective meaning "relating to a plane (geometry)". Planar may also refer to: Science and technology * Planar (computer graphics), computer graphics pixel information from several bitplanes * Planar (transmission line technologies), ...
3-trees, the maximal planar chordal graphs, the uniquely 4-colorable planar graphs, and the graphs of stacked polytopes. They are named after Apollonius of Perga, who studied a related circle-packing construction.


Definition

An Apollonian network may be formed, starting from a single triangle embedded in the Euclidean plane, by repeatedly selecting a triangular face of the embedding, adding a new vertex inside the face, and connecting the new vertex to each vertex of the face containing it. In this way, the triangle containing the new vertex is subdivided into three smaller triangles, which may in turn be subdivided in the same way.


Examples

The
complete graph In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is ...
s on three and four vertices, and , are both Apollonian networks. is formed by starting with a triangle and not performing any subdivisions, while is formed by making a single subdivision before stopping. The
Goldner–Harary graph In the mathematical field of graph theory, the Goldner–Harary graph is a simple undirected graph with 11 vertices and 27 edges. It is named after A. Goldner and Frank Harary, who proved in 1975 that it was the smallest non-Hamiltonian maximal ...
is an Apollonian network that forms the smallest non-Hamiltonian maximal planar graph. Another more complicated Apollonian network was used by to provide an example of a 1-tough non-Hamiltonian maximal planar graph.


Graph-theoretic characterizations

As well as being defined by recursive subdivision of triangles, the Apollonian networks have several other equivalent mathematical characterizations. They are the chordal maximal planar graphs, the chordal
polyhedral graph In geometric graph theory, a branch of mathematics, a polyhedral graph is the undirected graph formed from the vertices and edges of a convex polyhedron. Alternatively, in purely graph-theoretic terms, the polyhedral graphs are the 3-vertex-con ...
s, and the planar 3-trees. They are the uniquely 4-colorable planar graphs, and the planar graphs with a unique Schnyder wood decomposition into three trees. They are the maximal planar graphs with treewidth three, a class of graphs that can be characterized by their forbidden minors or by their reducibility under
Y-Δ transform The Y-Δ transform, also written wye-delta and also known by many other names, is a mathematical technique to simplify the analysis of an electrical network. The name derives from the shapes of the circuit diagrams, which look respectively like t ...
s. They are the maximal planar graphs with degeneracy three. They are also the planar graphs on a given number of vertices that have the largest possible number of triangles, the largest possible number of tetrahedral subgraphs, the largest possible number of cliques, and the largest possible number of pieces after decomposing by separating triangles.


Chordality

Apollonian networks are examples of maximal planar graphs, graphs to which no additional edges can be added without destroying planarity, or equivalently graphs that can be drawn in the plane so that every face (including the outer face) is a triangle. They are also
chordal graph In the mathematical area of graph theory, a chordal graph is one in which all cycles of four or more vertices have a ''chord'', which is an edge that is not part of the cycle but connects two vertices of the cycle. Equivalently, every induced c ...
s, graphs in which every cycle of four or more vertices has a diagonal edge connecting two non-consecutive cycle vertices, and the order in which vertices are added in the subdivision process that forms an Apollonian network is an elimination ordering as a chordal graph. This forms an alternative characterization of the Apollonian networks: they are exactly the chordal maximal planar graphs or equivalently the chordal
polyhedral graph In geometric graph theory, a branch of mathematics, a polyhedral graph is the undirected graph formed from the vertices and edges of a convex polyhedron. Alternatively, in purely graph-theoretic terms, the polyhedral graphs are the 3-vertex-con ...
s. In an Apollonian network, every
maximal clique In the mathematical area of graph theory, a clique ( or ) is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph G is an induced subgraph of G that is compl ...
is a complete graph on four vertices, formed by choosing any vertex and its three earlier neighbors. Every minimal clique separator (a clique that partitions the graph into two disconnected subgraphs) is one of the subdivided triangles. A chordal graph in which all maximal cliques and all minimal clique separators have the same size is a -tree, and Apollonian networks are examples of 3-trees. Not every 3-tree is planar, but the planar 3-trees are exactly the Apollonian networks.


Unique colorability

Every Apollonian network is also a uniquely 4-colorable graph. Because it is a planar graph, the four color theorem implies that it has a graph coloring with only four colors, but once the three colors of the initial triangle are selected, there is only one possible choice for the color of each successive vertex, so up to permutation of the set of colors it has exactly one 4-coloring. It is more difficult to prove, but also true, that every uniquely 4-colorable planar graph is an Apollonian network. Therefore, Apollonian networks may also be characterized as the uniquely 4-colorable planar graphs. Apollonian networks also provide examples of planar graphs having as few -colorings as possible for . The Apollonian networks are also exactly the maximal planar graphs that (once an exterior face is fixed) have a unique Schnyder wood, a partition of the edges of the graph into three interleaved trees rooted at the three vertices of the exterior face.


Treewidth

The Apollonian networks do not form a family of graphs that is closed under the operation of taking
graph minor In graph theory, an undirected graph is called a minor of the graph if can be formed from by deleting edges and vertices and by contracting edges. The theory of graph minors began with Wagner's theorem that a graph is planar if and only if ...
s, as removing edges but not vertices from an Apollonian network produces a graph that is not an Apollonian network. However, the planar partial 3-trees, subgraphs of Apollonian networks, are minor-closed. Therefore, according to the
Robertson–Seymour theorem In graph theory, the Robertson–Seymour theorem (also called the graph minor theorem) states that the undirected graphs, partially ordered by the graph minor relationship, form a well-quasi-ordering. Equivalently, every family of graphs that is c ...
, they can be characterized by a finite number of forbidden minors. The minimal forbidden minors for the planar partial 3-trees are the four minimal graphs among the forbidden minors for the planar graphs and the partial 3-trees: the
complete graph In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is ...
, the
complete bipartite graph In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set..Electronic edition page 17. Graph theory i ...
, the graph of the
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
, and the graph of the
pentagonal prism In geometry, the pentagonal prism is a prism with a pentagonal base. It is a type of heptahedron with seven faces, fifteen edges, and ten vertices. As a semiregular (or uniform) polyhedron If faces are all regular, the pentagonal prism is ...
. The Apollonian graphs are the maximal graphs that do not have any of these four graphs as a minor. A
Y-Δ transform The Y-Δ transform, also written wye-delta and also known by many other names, is a mathematical technique to simplify the analysis of an electrical network. The name derives from the shapes of the circuit diagrams, which look respectively like t ...
, an operation that replaces a degree-three vertex in a graph by a triangle connecting its neighbors, is sufficient (together with the removal of parallel edges) to reduce any Apollonian network to a single triangle, and more generally the planar graphs that can be reduced to a single edge by Y-Δ transforms, removal of parallel edges, removal of degree-one vertices, and compression of degree-two vertices are exactly the planar partial 3-trees. The dual graphs of the planar partial 3-trees form another minor-closed graph family and are exactly the planar graphs that can be reduced to a single edge by Δ-Y transforms, removal of parallel edges, removal of degree-one vertices, and compression of degree-two vertices.


Degeneracy

In every subgraph of an Apollonian network, the most recently added vertex has degree at most three, so Apollonian networks have degeneracy three. The order in which the vertices are added to create the network is therefore a degeneracy ordering, and the Apollonian networks coincide with the 3-degenerate maximal planar graphs.


Extremality

Another characterization of the Apollonian networks involves their
connectivity Connectivity may refer to: Computing and technology * Connectivity (media), the ability of the social media to accumulate economic capital from the users connections and activities * Internet connectivity, the means by which individual terminal ...
. Any maximal planar graph may be decomposed into 4-vertex-connected maximal planar subgraphs by splitting it along its separating triangles (triangles that are not faces of the graph): given any non-facial triangle: one can form two smaller maximal planar graphs, one consisting of the part inside the triangle and the other consisting of the part outside the triangle. The maximal planar graphs without separating triangles that may be formed by repeated splits of this type are sometimes called blocks, although that name has also been used for the
biconnected component In graph theory, a biconnected component (sometimes known as a 2-connected component) is a maximal biconnected subgraph. Any connected graph decomposes into a tree of biconnected components called the block-cut tree of the graph. The blocks a ...
s of a graph that is not itself biconnected. An Apollonian network is a maximal planar graph in which all of the blocks are isomorphic to the complete graph . In
extremal graph theory Extremal graph theory is a branch of combinatorics, itself an area of mathematics, that lies at the intersection of extremal combinatorics and graph theory. In essence, extremal graph theory studies how global properties of a graph influence local ...
, Apollonian networks are also exactly the -vertex planar graphs in which the number of blocks achieves its maximum, , and the planar graphs in which the number of triangles achieves its maximum, . Since each subgraph of a planar graph must be a block, these are also the planar graphs in which the number of subgraphs achieves its maximum, , and the graphs in which the number of
cliques A clique ( AusE, CanE, or ), in the social sciences, is a group of individuals who interact with one another and share similar interests. Interacting with cliques is part of normative social development regardless of gender, ethnicity, or popular ...
of any type achieves its maximum, .


Geometric realizations


Construction from circle packings

Apollonian networks are named after Apollonius of Perga, who studied the
Problem of Apollonius In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane (Figure 1). Apollonius of Perga (c. 262 190 BC) posed and solved this famous problem in his work (', "Tangencies ...
of constructing a circle tangent to three other circles. One method of constructing Apollonian networks is to start with three mutually-tangent circles and then repeatedly inscribe another circle within the gap formed by three previously-drawn circles. The fractal collection of circles produced in this way is called an
Apollonian gasket In mathematics, an Apollonian gasket or Apollonian net is a fractal generated by starting with a triple of circles, each tangent to the other two, and successively filling in more circles, each tangent to another three. It is named after Greek ...
. If the process of producing an Apollonian gasket is stopped early, with only a finite set of circles, then the graph that has one vertex for each circle and one edge for each pair of tangent circles is an Apollonian network. The existence of a set of tangent circles whose tangencies represent a given Apollonian network forms a simple instance of the Koebe–Andreev–Thurston circle-packing theorem, which states that any planar graph can be represented by tangent circles in the same way.


Polyhedra

Apollonian networks are planar 3-connected graphs and therefore, by Steinitz's theorem, can always be represented as the graphs of convex
polyhedra In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is the convex hull of finitely many points, not all on ...
. The convex polyhedron representing an Apollonian network is a 3-dimensional stacked polytope. Such a polytope can be obtained from a tetrahedron by repeatedly gluing additional tetrahedra one at a time onto its triangular faces. Therefore, Apollonian networks may also be defined as the graphs of stacked 3d polytopes. It is possible to find a representation of any Apollonian network as convex 3d polyhedron in which all of the coordinates are integers of polynomial size, better than what is known for other planar graphs.


Triangle meshes

The recursive subdivision of triangles into three smaller triangles was investigated as an
image segmentation In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects ( sets of pixels). The goal of segmentation is to simpli ...
technique in computer vision by ; in this context, they called it the ternary scalene triangle decomposition. They observed that, by placing each new vertex at the
centroid In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any ...
of its enclosing triangle, the triangulation could be chosen in such a way that all triangles have equal areas, although they do not all have the same shape. More generally, Apollonian networks may be drawn in the plane with any prescribed area in each face; if the areas are
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
s, so are all of the vertex coordinates. It is also possible to carry out the process of subdividing a triangle to form an Apollonian network in such a way that, at every step, the edge lengths are rational numbers; it is an open problem whether every planar graph has a drawing with this property. It is possible in polynomial time to find a drawing of a planar 3-tree with integer coordinates minimizing the area of the
bounding box In geometry, the minimum or smallest bounding or enclosing box for a point set in dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie. When other kinds of measure ...
of the drawing, and to test whether a given planar 3-tree may be drawn with its vertices on a given set of points.


Properties and applications


Matching-free graphs

used Apollonian networks to construct an infinite family of maximal planar graphs with an even number of vertices but with no
perfect matching In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph , a perfect matching in is a subset of edge set , such that every vertex in the vertex set is adjacent to exactl ...
. Plummer's graphs are formed in two stages. In the first stage, starting from a triangle , one repeatedly subdivides the triangular face of the subdivision that contains edge : the result is a graph consisting of a path from to the final subdivision vertex together with an edge from each path vertex to each of and . In the second stage, each of the triangular faces of the resulting planar graph is subdivided one more time. If the path from to the final subdivision vertex of the first stage has even length, then the number of vertices in the overall graph is also even. However, approximately 2/3 of the vertices are the ones inserted in the second stage; these form an independent set, and cannot be matched to each other, nor are there enough vertices outside the independent set to find matches for all of them. Although Apollonian networks themselves may not have perfect matchings, the
planar dual In the mathematical discipline of graph theory, the dual graph of a plane graph is a graph that has a vertex for each face of . The dual graph has an edge for each pair of faces in that are separated from each other by an edge, and a self-loop ...
graphs of Apollonian networks are 3-regular graphs with no cut edges, so by a theorem of they are guaranteed to have at least one perfect matching. However, in this case more is known: the duals of Apollonian networks always have an exponential number of perfect matchings.
László Lovász László Lovász (; born March 9, 1948) is a Hungarian mathematician and professor emeritus at Eötvös Loránd University, best known for his work in combinatorics, for which he was awarded the 2021 Abel Prize jointly with Avi Wigderson. He wa ...
and Michael D. Plummer conjectured that a similar exponential lower bound holds more generally for every 3-regular graph without cut edges, a result that was later proven.


Power law graphs

studied power laws in the degree sequences of a special case of networks of this type, formed by subdividing all triangles the same number of times. They used these networks to model packings of space by particles of varying sizes. Based on their work, other authors introduced random Apollonian networks, formed by repeatedly choosing a random face to subdivide, and they showed that these also obey power laws in their degree distribution and have small average distances.; . Alan M. Frieze and Charalampos E. Tsourakakis analyzed the highest degrees and the eigenvalues of random Apollonian networks. Andrade et al. also observed that their networks satisfy the small world effect, that all vertices are within a small distance of each other. Based on numerical evidence they estimated the average distance between randomly selected pairs of vertices in an -vertex network of this type to be proportional to , but later researchers showed that the average distance is actually proportional to .


Angle distribution

observed that if each new vertex is placed at the
incenter In geometry, the incenter of a triangle is a triangle center, a point defined for any triangle in a way that is independent of the triangle's placement or scale. The incenter may be equivalently defined as the point where the internal angle bis ...
of its triangle, so that the edges to the new vertex bisect the angles of the triangle, then the set of triples of angles of triangles in the subdivision, when reinterpreted as triples of barycentric coordinates of points in an
equilateral triangle In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each oth ...
, converges in shape to the Sierpinski triangle as the number of levels of subdivision grows.


Hamiltonicity

claimed erroneously that all Apollonian networks have
Hamiltonian cycle In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex ...
s; however, the
Goldner–Harary graph In the mathematical field of graph theory, the Goldner–Harary graph is a simple undirected graph with 11 vertices and 27 edges. It is named after A. Goldner and Frank Harary, who proved in 1975 that it was the smallest non-Hamiltonian maximal ...
provides a counterexample. If an Apollonian network has
toughness In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing.combinatorial enumeration Enumerative combinatorics is an area of combinatorics that deals with the number of ways that certain patterns can be formed. Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infini ...
problem of counting Apollonian triangulations was studied by , who showed that they have the simple generating function described by the equation . In this generating function, the term of degree counts the number of Apollonian networks with a fixed outer triangle and vertices. Thus, the numbers of Apollonian networks (with a fixed outer triangle) on 3, 4, 5, ... vertices are: :1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675, ... , a sequence that also counts
ternary tree : In computer science, a ternary tree is a tree data structure in which each node has at most three child nodes, usually distinguished as "left", “mid” and "right". Nodes with children are parent nodes, and child nodes may contain references ...
s and dissections of convex polygons into odd-sided polygons. For instance, there are 12 6-vertex Apollonian networks: three formed by subdividing the outer triangle once and then subdividing two of the resulting triangles, and nine formed by subdividing the outer triangle once, subdividing one of its triangles, and then subdividing one of the resulting smaller triangles.


History

is an early paper that uses a dual form of Apollonian networks, the planar maps formed by repeatedly placing new regions at the vertices of simpler maps, as a class of examples of planar maps with few colorings. Geometric structures closely related to Apollonian networks have been studied in polyhedral combinatorics since at least the early 1960s, when they were used by to describe graphs that can be realized as the graph of a polytope in only one way, without dimensional or combinatorial ambiguities, and by to find
simplicial polytope In geometry, a simplicial polytope is a polytope whose facets are all simplices. For example, a ''simplicial polyhedron'' in three dimensions contains only triangular facesPolyhedra, Peter R. Cromwell, 1997. (p.341) and corresponds via Steinitz's ...
s with no long paths. In
graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
, the close connection between planarity and treewidth goes back to , who showed that every minor-closed family of graphs either has bounded treewidth or contains all of the planar graphs. Planar 3-trees, as a class of graphs, were explicitly considered by , , , and many authors since them. The name "Apollonian network" was given by to the networks they studied in which the level of subdivision of triangles is uniform across the network; these networks correspond geometrically to a type of stacked polyhedron called a
Kleetope In geometry and polyhedral combinatorics, the Kleetope of a polyhedron or higher-dimensional convex polytope is another polyhedron or polytope formed by replacing each facet of with a shallow pyramid. Kleetopes are named after Victor Klee. Exam ...
. Other authors applied the same name more broadly to planar 3-trees in their work generalizing the model of Andrade et al. to random Apollonian networks. The triangulations generated in this way have also been named "stacked triangulations" or "stack-triangulations".; ; .


See also

*
Barycentric subdivision In mathematics, the barycentric subdivision is a standard way to subdivide a given simplex into smaller ones. Its extension on simplicial complexes is a canonical method to refine them. Therefore, the barycentric subdivision is an important tool i ...
, a different method of subdividing triangles into smaller triangles * Loop subdivision surface, yet another method of subdividing triangles into smaller triangles


Notes


References

* *. *. *. *. As cited by . *. *. *. *. *. *. *. *. * *. *. *. *. *. *. *. *. *. *. See also the same journal 6(2):33 (1975) and 8:104-106 (1977). Reference fro
listing of Harary's publications
*. *. *. *. *. *. *. *. *. *. *. *. *. *. As cited by . *. *. An error regarding Hamiltonicity was pointed out by
MathSciNet MathSciNet is a searchable online bibliographic database created by the American Mathematical Society in 1996. It contains all of the contents of the journal ''Mathematical Reviews'' (MR) since 1940 along with an extensive author database, links ...
reviewer W. T. Tutte. *. *. *. *. *. *. *.


External links

*{{mathworld, title=Apollonian Network, urlname=ApollonianNetwork, mode=cs2
Matlab Simulation Code
Graph families Perfect graphs Planar graphs Triangulation (geometry)