HOME

TheInfoList



OR:

Adult neurogenesis is the process in which
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. ...
s are generated from
neural stem cell Neural stem cells (NSCs) are self-renewing, multipotent cells that firstly generate the radial glial progenitor cells that generate the neurons and glia of the nervous system of all animals during embryonic development. Some neural progenitor ste ...
s in the adult. This process differs from
prenatal Prenatal development () includes the development of the embryo and of the fetus during a viviparous animal's gestation. Prenatal development starts with fertilization, in the germinal stage of embryonic development, and continues in fetal devel ...
neurogenesis. In most mammals, new neurons are born throughout adulthood in two regions of the brain: * The
subgranular zone The subgranular zone (SGZ) is a brain region in the hippocampus where adult neurogenesis occurs. The other major site of adult neurogenesis is the subventricular zone (SVZ) in the brain. Structure The subgranular zone is a narrow layer of cells ...
(SGZ), part of the
dentate gyrus The dentate gyrus (DG) is part of the hippocampal formation in the temporal lobe of the brain, which also includes the hippocampus and the subiculum. The dentate gyrus is part of the hippocampal trisynaptic circuit and is thought to contribute t ...
of the
hippocampus The hippocampus (via Latin from Greek , ' seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, ...
, where neural stem cells give birth to
granule cell A granule is a large particle or grain. It can refer to: * Granule (cell biology), any of several submicroscopic structures, some with explicable origins, others noted only as cell type-specific features of unknown function ** Azurophilic granul ...
s (implicated in memory formation and learning). * The
subventricular zone The subventricular zone (SVZ) is a region situated on the outside wall of each lateral ventricle of the vertebrate brain. It is present in both the embryonic and adult brain. In embryonic life, the SVZ refers to a secondary proliferative zone ...
(SVZ) of the
lateral ventricle The lateral ventricles are the two largest ventricles of the brain and contain cerebrospinal fluid (CSF). Each cerebral hemisphere contains a lateral ventricle, known as the left or right ventricle, respectively. Each lateral ventricle resemble ...
s, which can be divided into three microdomains: lateral, dorsal and medial. Neural stem cells migrate to the
olfactory bulb The olfactory bulb (Latin: ''bulbus olfactorius'') is a neural structure of the vertebrate forebrain involved in olfaction, the sense of smell. It sends olfactory information to be further processed in the amygdala, the orbitofrontal cortex ( ...
through the
rostral migratory stream The rostral migratory stream (RMS) is a specialized migratory route found in the brain of some animals along which neuronal precursors that originated in the subventricular zone (SVZ) of the brain migrate to reach the main olfactory bulb (OB ...
where they differentiate into interneurons participating in the
sense of smell The sense of smell, or olfaction, is the special sense through which smells (or odors) are perceived. The sense of smell has many functions, including detecting desirable foods, hazards, and pheromones, and plays a role in taste. In humans, ...
. In humans, however, few if any olfactory bulb neurons are generated after birth. More attention has been given to the neurogenesis in the
dentate gyrus The dentate gyrus (DG) is part of the hippocampal formation in the temporal lobe of the brain, which also includes the hippocampus and the subiculum. The dentate gyrus is part of the hippocampal trisynaptic circuit and is thought to contribute t ...
than in the striatum. In
rodent Rodents (from Latin , 'to gnaw') are mammals of the order Rodentia (), which are characterized by a single pair of continuously growing incisors in each of the upper and lower jaws. About 40% of all mammal species are rodents. They are n ...
s, many of the newborn dentate gyrus neurons die shortly after they are born, but a number of them become functionally integrated into the surrounding brain tissue. Adult neurogenesis in rodents is reported to play a role in learning and memory, emotion, stress, depression, response to injury, and other conditions. The numbers of neurons born in the human adult hippocampus remains controversial; some studies have reported that in adult humans about 700 new neurons are added in the hippocampus every day, while more recent studies show that adult hippocampal neurogenesis does not exist in humans, or, if it does, it is at undetectable levels. Recent evidence shows that adult neurogenesis is basically extinct in humans. The role of new neurons in human adult brain function thus remains unclear.


Mechanism


Adult neural stem cells

Neural stem cells (NSCs) are the self-renewing,
multipotent Pluripotency: These are the cells that can generate into any of the three Germ layers which imply Endodermal, Mesodermal, and Ectodermal cells except tissues like the placenta. According to Latin terms, Pluripotentia means the ability for many thin ...
cells that generate the main
phenotypes In genetics, the phenotype () is the set of observable characteristics or phenotypic trait, traits of an organism. The term covers the organism's morphology (biology), morphology or physical form and structure, its Developmental biology, dev ...
of the
nervous system In biology, the nervous system is the highly complex part of an animal that coordinates its actions and sensory information by transmitting signals to and from different parts of its body. The nervous system detects environmental changes ...
.


Lineage reprogramming (trans-differentiation)

Emerging evidence suggests that neural microvascular pericytes, under instruction from resident glial cells, are reprogrammed into interneurons and enrich local neuronal microcircuits. This response is amplified by concomitant angiogenesis.


Model organisms of neurogenesis


Planarian

Planarian A planarian is one of the many flatworms of the traditional class Turbellaria. It usually describes free-living flatworms of the order Tricladida (triclads), although this common name is also used for a wide number of free-living platyhelmint ...
are one of the earliest model organisms used to study regeneration with
Pallas Pallas may refer to: Astronomy * 2 Pallas asteroid ** Pallas family, a group of asteroids that includes 2 Pallas * Pallas (crater), a crater on Earth's moon Mythology * Pallas (Giant), a son of Uranus and Gaia, killed and flayed by Athena * Pa ...
as the forefather of planarian studies. Planarian are a classical invertebrate model that in recent decades have been used to examine neurogenesis. The central nervous system of a planarian is simple, though fully formed with two lobes located in the head and two
ventral nerve cord The ventral nerve cord is a major structure of the invertebrate central nervous system. It is the functional equivalent of the vertebrate spinal cord. The ventral nerve cord coordinates neural signaling from the brain to the body and vice versa, i ...
s. This model reproduces asexually producing a complete and fully functioning nervous system after division allowing for consistent examination of neurogenesis.


Axolotl

The
axolotl The axolotl (; from nci, āxōlōtl ), ''Ambystoma mexicanum'', is a paedomorphic salamander closely related to the tiger salamander. Axolotls are unusual among amphibians in that they reach adulthood without undergoing metamorphosis. I ...
is less commonly used than other vertebrates, but is still a classical model for examining regeneration and neurogenesis. Though the axolotl has made its place in biomedical research in terms of limb regeneration, the model organism has displayed a robust ability to generate new neurons following damage . Axolotls have contributed as a bridge organism between invertebrates and mammals, as the species has the regenerative capacity to undergo complete neurogenesis forming a wide range of neuronal populations not limited to a small niche, yet the complexity and architecture is complex and analogous in many ways to human neural development.


Zebrafish

Zebrafish The zebrafish (''Danio rerio'') is a freshwater fish belonging to the minnow family (Cyprinidae) of the order Cypriniformes. Native to South Asia, it is a popular aquarium fish, frequently sold under the trade name zebra danio (and thus often ca ...
have long been a classical
developmental Development of the human body is the process of growth to maturity. The process begins with fertilization, where an egg released from the ovary of a female is penetrated by a sperm cell from a male. The resulting zygote develops through mitosi ...
model due to their transparency during
organogenesis Organogenesis is the phase of embryonic development that starts at the end of gastrulation and continues until birth. During organogenesis, the three germ layers formed from gastrulation (the ectoderm, endoderm, and mesoderm) form the internal org ...
and have been utilized heavily in early development neurogenesis.). The zebrafish displays a strong neurogenerative capacity capable of regenerating a variety of tissues and complete neuronal diversity (with the exception of
astrocyte Astrocytes (from Ancient Greek , , "star" + , , "cavity", "cell"), also known collectively as astroglia, are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical control of e ...
s, as they have yet to be identified within the zebrafish brain) with continued neurogenesis through the life span. In recent decades the model has solidified its role in adult regeneration and neurogenesis following damage. The zebrafish, like the axolotl, has played a key role as a bridge organism between invertebrates and mammals. The zebrafish is a rapidly developing organism that is relatively inexpensive to maintain, while providing the field ease of genetic manipulation and a complex nervous system.


Chick

Though avians have been used primarily to study early embryonic development, in recent decades the developing chick has played a critical role in the examination of neurogenesis and regeneration as the young chick is capable of neuronal-turnover at a young age, but loses the neurogenerative capacity into adulthood. The loss of neuroregenerative ability over maturation has allowed investigators to further examine genetic regulators of neurogenesis.


Rodents

Rodent Rodents (from Latin , 'to gnaw') are mammals of the order Rodentia (), which are characterized by a single pair of continuously growing incisors in each of the upper and lower jaws. About 40% of all mammal species are rodents. They are n ...
s, mice and rats, have been the most prominent model organism since the discovery of modern neurons by Santiago Ramon y Cajal. Rodents have a very similar architecture and a complex nervous system with very little regenerative capacity similar to that found in humans. For that reason, rodents have been heavily used in pre-clinical testing. Rodents display a wide range of neural circuits responsible for complex behaviors making them ideal for studies of dendritic pruning and axonal shearing. While the organism makes for a strong human analog, the model has its limitations not found in the previous models: higher cost of maintenance, lower breeding numbers, and the limited neurogenerative abilities. To some extent, adult neurogenesis in rodents may be induced by selective disruption of Notch signalling in
astrocytes Astrocytes (from Ancient Greek , , "star" + , , "cavity", "cell"), also known collectively as astroglia, are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical control of endo ...
: this produces novel neurons which functionally integrate into the striatal circuit. Adult neurogenesis in the subventricular zone and dentate gyrus of rodents generates
oxidative stress Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal ...
and production of
reactive oxygen species In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen. The reduction of molecular oxygen () p ...
that can damage both DNA and
lipid Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids includ ...
s.Walton NM, Shin R, Tajinda K, Heusner CL, Kogan JH, Miyake S, Chen Q, Tamura K, Matsumoto M. Adult neurogenesis transiently generates oxidative stress. PLoS One. 2012;7(4):e35264. . Epub 2012 Apr 30. PMID 22558133; PMCID: PMC3340368 The oxidative stress caused by postnatal neurogenesis may significantly contribute to the reduced learning and
memory Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembered ...
that occurs with increasing age.


Octopus

A cephalopod also known as the common octopus, this organism has an intricate nervous system that demonstrates the brains capacity to produce new cells. In this case and in other taxa when compared, these organisms adapt to unpredictable environments by using newly formed brain cells. This is over a short life-span (female about one year) where wild common octopuses focus most of their energy on mating and offspring care. Findings suggest that the octopus vulgaris like other short-lived species have a complex hippocampal proliferation, needed for spacial/navigation, and short and long-term memory.


Chickadees

Black-capped chickadees are a well-known model species in the field of neuroscience for their neural mechanisms in song vocalization, plasticity, and memory. Black-capped chickadees are different from other species in the larger group of songbirds because they are characterized by food-caching behaviors. Due to this behavior, chickadees can be described through their remarkable spatial memory. Seasonal changes in hippocampal densities have been described since 1994 where neuronal survival peaks during the fall (October), measured by
thymidine Thymidine (symbol dT or dThd), also known as deoxythymidine, deoxyribosylthymine, or thymine deoxyriboside, is a pyrimidine deoxynucleoside. Deoxythymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. ...
(see tracking neurogenesis below) labeled cells, weeks after injection. When compared to non-food caching birds such as the house sparrow, chickadees had significantly more hippocampal neuron recruitment from fall to spring. The changes in hippocampal density is directly associated with increased hoarding behavior, especially during the winter when better spatial memory maximizes their survival. Over the 2 decades since the initial discovery, the specific role of chickadee hippocampus in memory has gained wide attention. In an experimental setting, hippocampal lesions affect memory for locations, validating previous notions for this specific role. Further, experimentally inhibiting neuronal proliferation decreases scores on spatial memory tasks, supporting that new neurons hold the same role as pre-existing ones. The specific function of the hippocampus, coupled with seasonal changes in their volume, point towards their temporary advantages for spatial memory consolidation. Taken all together, adult neurogenesis in the hippocampus of black-capped chickadees suggest a selective mechanisms for neuronal survival in direct correlation with seasonal food caching behavior. Developmentally,
progenitor cell A progenitor cell is a biological cell that can differentiate into a specific cell type. Stem cells and progenitor cells have this ability in common. However, stem cells are less specified than progenitor cells. Progenitor cells can only differ ...
s called radial glial cells are thought to mitigate newly born neurons to their destinations. Radial glial cells extend processes from their soma in the avian ventricular zone to the parenchyma of the adult forebrain. These New neurons have been observed as early as 3 days after thymidine administration in the HVC and as early as 7 days before reaching the hippocampus. Avian migration of new neurons are analogous to mammalian species, providing a future direction in exploring neurogenesis in mammalian species and beyond. However, captivity has been shown to reduce hippocampal volumes when compared to wild counterparts. Reduced neurogenesis in captive birds may be caused by stress, lack of exercise, diminished social interaction, and limited caching opportunities.


Tracking neurogenesis

The creation of new functional
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. ...
s can be measured in several ways, summarized in the following sections.


DNA labelling

Labelled DNA can trace dividing cell's lineage, and determine the location of its daughter cells. A nucleic acid analog is inserted into the
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding g ...
of a neuron-generating cell (such as a
glial cell Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form myel ...
or
neural stem cell Neural stem cells (NSCs) are self-renewing, multipotent cells that firstly generate the radial glial progenitor cells that generate the neurons and glia of the nervous system of all animals during embryonic development. Some neural progenitor ste ...
).
Thymine Thymine () ( symbol T or Thy) is one of the four nucleobases in the nucleic acid of DNA that are represented by the letters G–C–A–T. The others are adenine, guanine, and cytosine. Thymine is also known as 5-methyluracil, a pyrimidi ...
analogs (3H)
thymidine Thymidine (symbol dT or dThd), also known as deoxythymidine, deoxyribosylthymine, or thymine deoxyriboside, is a pyrimidine deoxynucleoside. Deoxythymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. ...
and BrdU are commonly used DNA labels, and are used for radiolabelling and immunohistochemistry respectively.


Fate determination via neuronal lineage markers

DNA labeling can be used in conjunction with neuronal lineage markers to determine the fate of new functional brain cells. First, incorporated labeled
nucleotide Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecule ...
s are used to detect the populations of newly divided daughter cells. Specific cell types are then determined with unique differences in their
expression Expression may refer to: Linguistics * Expression (linguistics), a word, phrase, or sentence * Fixed expression, a form of words with a specific meaning * Idiom, a type of fixed expression * Metaphorical expression, a particular word, phrase, o ...
of
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s, which can be used as
antigen In immunology, an antigen (Ag) is a molecule or molecular structure or any foreign particulate matter or a pollen grain that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune respons ...
s in an
immunoassay An immunoassay (IA) is a biochemical test that measures the presence or concentration of a macromolecule or a small molecule in a solution through the use of an antibody (usually) or an antigen (sometimes). The molecule detected by the immunoass ...
. For example, NeuN/Fox3 and GFAP are
antigen In immunology, an antigen (Ag) is a molecule or molecular structure or any foreign particulate matter or a pollen grain that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune respons ...
s commonly used to detect
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. ...
s,
glia Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form myel ...
, and ependymal cells.
Ki67 Antigen KI-67, also known as Ki-67, Ki-67 or MKI67 (Marker Of Proliferation Ki-67), is a protein that in humans is encoded by the ''MKI67'' gene (antigen identified by monoclonal antibody Ki-67). Function Antigen KI-67 is a nuclear protein tha ...
is the most commonly used antigen to detect cell proliferation. Some
antigen In immunology, an antigen (Ag) is a molecule or molecular structure or any foreign particulate matter or a pollen grain that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune respons ...
s can be used to measure specific stem cell stages. For example, stem cells requires the sox2 gene to maintain
pluripotency Pluripotency: These are the cells that can generate into any of the three Germ layers which imply Endodermal, Mesodermal, and Ectodermal cells except tissues like the placenta. According to Latin terms, Pluripotentia means the ability for many thin ...
and is used to detect enduring concentrations of stem cells in CNS tissue. The
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
nestin is an intermediate filament, which is essential for the radial growth of
axon An axon (from Greek ἄξων ''áxōn'', axis), or nerve fiber (or nerve fibre: see spelling differences), is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action p ...
s, and is therefore used to detect the formation of new synapses.


Cre-Lox recombination

Some genetic tracing studies utilize cre-lox recombination to bind a promoter to a
reporter gene In molecular biology, a reporter gene (often simply reporter) is a gene that researchers attach to a regulatory sequence of another gene of interest in bacteria, cell culture, animals or plants. Such genes are called reporters because the charac ...
, such as
lacZ The ''lactose'' operon (''lac'' operon) is an operon required for the transport and metabolism of lactose in ''E. coli'' and many other enteric bacteria. Although glucose is the preferred carbon source for most bacteria, the ''lac'' operon allows ...
or GFP gene. This method can be used for long term quantification of cell division and labeling, whereas the previously mentioned procedures are only useful for short-term quantification.


Viral vectors

It has recently become more common to use recombinant viruses to insert the
genetic information A nucleic acid sequence is a succession of bases signified by a series of a set of five different letters that indicate the order of nucleotides forming alleles within a DNA (using GACT) or RNA (GACU) molecule. By convention, sequences are usu ...
encoding specific markers (usually protein fluorophores such as GFP) that are only expressed in cells of a certain kind. The marker gene is inserted
downstream Downstream may refer to: * Downstream (bioprocess) * Downstream (manufacturing) * Downstream (networking) * Downstream (software development) * Downstream (petroleum industry) * Upstream and downstream (DNA), determining relative positions on DNA ...
of a promoter, leading to transcription of that marker only in cells containing the transcription factor(s) that bind to that promoter. For example, a recombinant plasmid may contain the promoter for
doublecortin Neuronal migration protein doublecortin, also known as doublin or lissencephalin-X is a protein that in humans is encoded by the DCX gene. Function Doublecortin (DCX) is a microtubule-associated protein expressed by neuronal precursor cells an ...
, a protein expressed predominantly by
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. ...
s, upstream of a sequence coding for GFP, thereby making infected cells
fluoresce Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
green upon exposure to light in the blue to ultraviolet range while leaving non
doublecortin Neuronal migration protein doublecortin, also known as doublin or lissencephalin-X is a protein that in humans is encoded by the DCX gene. Function Doublecortin (DCX) is a microtubule-associated protein expressed by neuronal precursor cells an ...
expressing cells unaffected, even if they contain the plasmid. Many cells will contain multiple copies of the plasmid and the fluorphore itself, allowing the fluorescent properties to be transferred along an infected cell's lineage. By labeling a cell that gives rise to neurons, such as a
neural stem cell Neural stem cells (NSCs) are self-renewing, multipotent cells that firstly generate the radial glial progenitor cells that generate the neurons and glia of the nervous system of all animals during embryonic development. Some neural progenitor ste ...
s or neural precursor cells, one can track the creation, proliferation, and even migration of newly created neurons. It is important to note, however, that while the plasmid is stable for long periods of time, its protein products may have highly variable
half lives Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
and their fluorescence may decrease as well as become too diluted to be seen depending on the number of round of replication they have undergone, making this method more useful for tracking self-similar neural precursor or neural stem cells rather than neurons themselves. The insertion of
genetic material Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main clas ...
via a viral vector tends to be sporadic and infrequent relative to the total number of cells in a given region of tissue, making quantification of cell division inaccurate. However, the above method can provide highly accurate data with respect to when a cell was born as well as full cellular morphologies.


Methods for inhibiting neurogenesis

Many studies analyzing the role of adult neurogenesis utilize a method of inhibiting cell proliferation in specific brain regions, mimicking an inhibition of neurogenesis, to observe the effects on behavior.


Pharmacological inhibition

Pharmacological inhibition is widely used in various studies, as it provides many benefits. It is generally inexpensive as compared to other methods, such as irradiation, can be used on various species, and does not require any invasive procedures or surgeries for the subjects. However, it does pose certain challenges, as these inhibitors can't be used to inhibit proliferation in specific regions, thus leading to nonspecific effects from other systems being affected. To avoid these effects, more work must be done to determine optimal doses in order to minimize the effects on systems unrelated to neurogenesis. A common pharmacological inhibitor for adult neurogenesis is methylazoxymethanol acetate (MAM), a chemotherapeutic agent. Other cell division inhibitors commonly used in studies are cytarabine and temozolomide.


Pharmacogenetics

Another method used to study the effects of adult neurogenesis is using pharmacogenetic models. These models provide different benefits from the pharmacological route, as it allows for more specificity by targeting specific precursors to neurogenesis and specific stem cell promoters. It also allows for temporal specificity with the interaction of certain drugs. This is beneficial in looking specifically at neurogenesis in adulthood, after normal development of other regions in the brain. The herpes simplex virus thymidine kinase (HSV-TK) has been used in studies in conjunction with antiviral drugs to inhibit adult neurogenesis. It works by targeting stem cells using glial fibrillary acidic proteins and nestin expression. These targeted stem cells undergo cell death instead of cell proliferation when exposed to antiviral drugs. Cre protein is also commonly used in targeting stem cells that will undergo gene changes upon treatment with tamoxifen.


Irradiation

Irradiation is a method that allows for very specific inhibition of adult neurogenesis. It can be targeted to the brain to avoid affecting other systems and having nonspecific effects. It can even be used to target specific brain regions, which is important in determining how adult neurogenesis in different areas of the brain affects behavior. However, irradiation is more expensive than the other methods and also requires large equipment with trained individuals.


Inhibition of adult neurogenesis in the hippocampus

Many studies have observed how inhibiting adult neurogenesis in other mammals, such as rats and mice, affect their behavior. Inhibition of adult neurogenesis in the hippocampus has been shown to have various affects on learning and memory, conditioning, and investigative behaviors. Impaired fear conditioning has been seen in studies involving rats with a lack of adult neurogenesis in the hippocampus. Inhibition of adult neurogenesis in the hippocampus has also been linked to changes in behavior in tasks involving investigation. Rats also show decreased contextualized freezing behaviors in response to contextualized fear and impairment in learning spatial locations when lacking adult neurogenesis.


Effects on pattern separation

The changes in learning and memory seen in the studies mentioned previously are thought to be related to the role of adult neurogenesis in regulating pattern separation. Pattern separation is defined as, "a process to remove redundancy from similar inputs so that events can be separated from each other and interference can be reduced, and in addition can produce a more orthogonal, sparse, and categorized set of outputs." This impairment in pattern separation could explain the impairments seen in other learning and memory tasks. A decreased ability in reducing interference could lead to greater difficulty in forming and retaining new memories., although it's hard to discriminate between effects of neurogenesis in learning and pattern separation due to limitations in the interpretation behavioral results." Studies show that rats with inhibited adult neurogenesis demonstrate difficulty in differentiating and learning contextualized fear conditioning. Rats with blocked adult neurogenesis also show impaired differential freezing when they are required to differentiate between similar contexts. This also affects their spatial recognition in radial arm maze tests when the arms are closer together rather than when they are further apart. A meta-analysis of behavioral studies evaluating the effect of neurogenesis in different pattern separation tests has shown a consistent effect of neurogenesis ablation on performance, although there are exceptions in the literature. "


Effects on behavioral inhibition

Behavioral inhibition is important in rats and other animals in halting whatever they are currently doing in order to reassess a situation in response to a threat or anything else that may require their attention. Rats with lesioned hippocampi show less behavioral inhibition when exposed to threats, such as cat odor. The disruption of normal cell proliferation and development of the dentate gyrus in developing rats also impairs their freezing response, which is an example of behavior inhibition, when exposed to an unfamiliar adult male rat. This impairment in behavioral inhibition also ties into the process of learning and memory, as repressing wrong answers or behaviors requires the ability to inhibit that response.


Implications


Role in learning

The functional relevance of adult neurogenesis is uncertain, but there is some evidence that hippocampal adult neurogenesis is important for learning and
memory Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembered ...
. Multiple mechanisms for the relationship between increased neurogenesis and improved cognition have been suggested, including computational theories to demonstrate that new neurons increase memory capacity, reduce interference between memories, or add information about time to memories. Given that the rate of the neurogenesis does not change substantially during the adulthood, it has been proposed that unique
episodic memories Episodic memory is the memory of everyday events (such as times, location geography, associated emotions, and other contextual information) that can be explicitly stated or conjured. It is the collection of past personal experiences that occurred ...
can be created by simply relying on the increased capacity of the young neurons of a particular age to establish stable new synapses with peers representing the unique features of an event to be memorized Experiments aimed at ablating neurogenesis have proven inconclusive, but several studies have proposed neurogenic-dependence in some types of learning, and others seeing no effect. Studies have demonstrated that the act of learning itself is associated with increased neuronal survival. However, the overall findings that adult neurogenesis is important for any kind of learning are equivocal.


Alzheimer's disease

Some studies suggest that decreased hippocampal neurogenesis can lead to development of Alzheimer's disease (AD). Yet, others hypothesize that AD patients have increased neurogenesis in the CA1 region of Ammon's horn (the principal region of AD hippocampal pathology) in order to compensate for neuronal loss. While the exact nature of the relationship between neurogenesis and Alzheimer's disease is unknown,
insulin-like growth factor 1 Insulin-like growth factor 1 (IGF-1), also called somatomedin C, is a hormone similar in molecular structure to insulin which plays an important role in childhood growth, and has anabolic effects in adults. IGF-1 is a protein that in humans ...
-stimulated neurogenesis produces major changes in hippocampal plasticity and seems to be involved in Alzheimer's pathology. Allopregnanolone, a neurosteroid, aids the continued neurogenesis in the brain. Levels of allopregnanolone in the brain decline in old age and Alzheimer's disease. Allopregnanolone has been shown through reversing impairment of neurogenesis to reverse the
cognitive deficit Cognitive deficit is an inclusive term to describe any characteristic that acts as a barrier to the cognition process. The term may describe * deficits in overall intelligence (as with intellectual disabilities), * specific and restricted defic ...
s in a
mouse model A model organism (often shortened to model) is a non-human species that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in the model organism will provide insight into the working ...
of Alzheimer's disease. Eph receptors and ephrin signaling have been shown to regulate adult neurogenesis in the
hippocampus The hippocampus (via Latin from Greek , ' seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, ...
and have been studied as potential targets to treat some symptoms of AD. Molecules associated with the pathology of AD, including ApoE, PS1 and APP, have also been found to impact adult neurogenesis in the hippocampus.


Role in schizophrenia

Studies suggest that people with
schizophrenia Schizophrenia is a mental disorder characterized by continuous or relapsing episodes of psychosis. Major symptoms include hallucinations (typically hearing voices), delusions, and disorganized thinking. Other symptoms include social wit ...
have a reduced hippocampus volume, which is believed to be caused by a reduction of adult neurogenesis. Correspondingly, this phenomenon might be the underlying cause of many of the symptoms of the disease. Furthermore, several research papers referred to four genes, dystrobrevin binding protein 1 (DTNBP1), neuregulin 1 (NRG1), disrupted in schizophrenia 1 (DISC1), and neuregulin 1 receptor (ERBB4), as being possibly responsible for this deficit in the normal regeneration of neurons. Similarities between depression and schizophrenia suggest a possible biological link between the two diseases. However, further research must be done in order to clearly demonstrate this relationship.


Adult neurogenesis and major depressive disorder

Research indicates that adult hippocampal neurogenesis is inversely related to major depressive disorder (MDD). Neurogenesis is decreased in the hippocampus of animal models of major depressive disorder, and many treatments for the disorder, including antidepressant medication and
electroconvulsive therapy Electroconvulsive therapy (ECT) is a psychiatric treatment where a generalized seizure (without muscular convulsions) is electrically induced to manage refractory mental disorders.Rudorfer, MV, Henry, ME, Sackeim, HA (2003)"Electroconvulsive th ...
, increase hippocampal neurogenesis. It has been theorized that decreased hippocampal neurogenesis in individuals with major depressive disorder may be related to the high levels of stress hormones called
glucocorticoid Glucocorticoids (or, less commonly, glucocorticosteroids) are a class of corticosteroids, which are a class of steroid hormones. Glucocorticoids are corticosteroids that bind to the glucocorticoid receptor that is present in almost every verteb ...
s, which are also associated with the disorder. The hippocampus instructs the hypothalamic-pituitary-adrenal axis to produce fewer glucocorticoids when glucocorticoid levels are high. A malfunctioning hippocampus, therefore, might explain the chronically high glucocorticoid levels in individuals with major depressive disorder. However, some studies have indicated that hippocampal neurogenesis is not lower in individuals with major depressive disorder and that blood glucocorticoid levels do not change when hippocampal neurogenesis changes, so the associations are still uncertain.


Stress and depression

Many now believe stress to be the most significant factor for the onset of depression. As discussed above, hippocampal cells are sensitive to stress which can lead to decreased neurogenesis. This area is being considered more frequently when examining the causes and treatments of depression. Studies have shown that removing the
adrenal gland The adrenal glands (also known as suprarenal glands) are endocrine glands that produce a variety of hormones including adrenaline and the steroids aldosterone and cortisol. They are found above the kidneys. Each gland has an outer cortex whic ...
in rats caused increased neurogenesis in the
dentate gyrus The dentate gyrus (DG) is part of the hippocampal formation in the temporal lobe of the brain, which also includes the hippocampus and the subiculum. The dentate gyrus is part of the hippocampal trisynaptic circuit and is thought to contribute t ...
. The adrenal gland is responsible for producing cortisol in response to a stressor, a substance that when produced in chronic amounts causes the down regulation of serotonin receptors and suppresses the birth of neurons. It was shown in the same study that administration of corticosterone to normal animals suppressed neurogenesis, the opposite effect. The most typical class of antidepressants administered for this disease are
selective serotonin reuptake inhibitors Selective serotonin reuptake inhibitors (SSRIs) are a class of drugs that are typically used as antidepressants in the treatment of major depressive disorder, anxiety disorders, and other psychological conditions. SSRIs increase the extracellul ...
(SSRIs) and their efficacy may be explained by neurogenesis. In a normal brain, an increase in serotonin causes suppression of the
corticotropin-releasing hormone Corticotropin-releasing hormone (CRH) (also known as corticotropin-releasing factor (CRF) or corticoliberin; corticotropin may also be spelled corticotrophin) is a peptide hormone involved in stress responses. It is a releasing hormone that bel ...
(CRH) through connection to the hippocampus. It directly acts on the
paraventricular nucleus The paraventricular nucleus (PVN, PVA, or PVH) is a nucleus in the hypothalamus. Anatomically, it is adjacent to the third ventricle and many of its neurons project to the posterior pituitary. These projecting neurons secrete oxytocin and a smaller ...
to decrease CRH release and down regulate norepinephrine functioning in the locus coeruleus. Because CRH is being repressed, the decrease in neurogenesis that is associated with elevated levels of it is also being reversed. This allows for the production of more brain cells, in particular at the 5-HT1a receptor in the dentate gyrus of the hippocampus which has been shown to improve symptoms of depression. It normally takes neurons approximately three to six weeks to mature, which is approximately the same amount of time it takes for SSRIs to take effect. This correlation strengthens the hypothesis that SSRIs act through neurogenesis to decrease the symptoms of depression. Some neuroscientists have expressed skepticism that neurogenesis is functionally significant, given that a tiny number of nascent neurons are actually integrated into existing neural circuitry. However, a recent study used the irradiation of nascent hippocampal neurons in non-human primates (NHP) to demonstrate that neurogenesis is required for antidepressant efficacy. Adult-born neurons appear to have a role in the regulation of
stress Stress may refer to: Science and medicine * Stress (biology), an organism's response to a stressor such as an environmental condition * Stress (linguistics), relative emphasis or prominence given to a syllable in a word, or to a word in a phrase ...
. Studies have linked neurogenesis to the beneficial actions of specific antidepressants, suggesting a connection between decreased hippocampal neurogenesis and depression. In a pioneer study, scientists demonstrated that the behavioral benefits of antidepressant administration in mice is reversed when neurogenesis is prevented with x-irradiation techniques. In fact, newborn neurons are more excitable than older neurons due to a differential expression of GABA receptors. A plausible model, therefore, is that these neurons augment the role of the hippocampus in the negative feedback mechanism of the HPA-axis (physiological stress) and perhaps in inhibiting the
amygdala The amygdala (; plural: amygdalae or amygdalas; also '; Latin from Greek, , ', 'almond', 'tonsil') is one of two almond-shaped clusters of nuclei located deep and medially within the temporal lobes of the brain's cerebrum in complex verte ...
(the region of brain responsible for fearful responses to stimuli). Indeed, suppression of adult neurogenesis can lead to an increased HPA-axis stress response in mildly stressful situations. This is consistent with numerous findings linking stress-relieving activities (learning, exposure to a new yet benign environment, and exercise) to increased levels of neurogenesis, as well as the observation that animals exposed to physiological stress (cortisol) or psychological stress (e.g. isolation) show markedly decreased levels of newborn neurons. Under chronic stress conditions, the elevation of newborn neurons by antidepressants improves the hippocampal-dependent control on the stress response; without newborn neurons, antidepressants are unable to restore the regulation of the stress response and recovery becomes impossible. Some studies have hypothesized that learning and memory are linked to depression, and that neurogenesis may promote
neuroplasticity Neuroplasticity, also known as neural plasticity, or brain plasticity, is the ability of neural networks in the brain to change through growth and reorganization. It is when the brain is rewired to function in some way that differs from how it p ...
. One study proposes that mood may be regulated, at a base level, by plasticity, and thus ''not chemistry''. Accordingly, the effects of antidepressant treatment would only be secondary to change in plasticity. However another study has demonstrated an interaction between antidepressants and plasticity; the antidepressant fluoxetine has been shown to restore plasticity in the adult rat brain. The results of this study imply that instead of being secondary to changes in plasticity, antidepressant therapy could promote it.


Effects of sleep reduction

One study has linked lack of sleep to a reduction in rodent hippocampal neurogenesis. The proposed mechanism for the observed decrease was increased levels of
glucocorticoids Glucocorticoids (or, less commonly, glucocorticosteroids) are a class of corticosteroids, which are a class of steroid hormones. Glucocorticoids are corticosteroids that bind to the glucocorticoid receptor that is present in almost every vertebr ...
. It was shown that two weeks of sleep deprivation acted as a neurogenesis-inhibitor, which was reversed after return of normal sleep and even shifted to a temporary increase in normal cell proliferation. More precisely, when levels of corticosterone are elevated, sleep deprivation inhibits this process. Nonetheless, normal levels of neurogenesis after chronic sleep deprivation return after 2 weeks, with a temporary increase of neurogenesis. While this is recognized, overlooked is the blood glucose demand exhibited during temporary diabetic hypoglycemic states. The American Diabetes Association amongst many documents the pseudosenilia and agitation found during temporary hypoglycemic states. Much more clinical documentation is needed to competently demonstrate the link between decreased hematologic glucose and neuronal activity and mood.


Possible use in treating Parkinson's disease

Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms usually emerge slowly, and as the disease worsens, non-motor symptoms becom ...
is a neurodegenerative disorder characterized by a progressive loss of
dopaminergic neuron Dopaminergic cell groups, DA cell groups, or dopaminergic nuclei are collections of neurons in the central nervous system that synthesize the neurotransmitter dopamine. In the 1960s, dopaminergic neurons or ''dopamine neurons'' were first ident ...
s in the substantia nigra. Transplantation of fetal dopaminergic
precursor cells In cell biology, a precursor cell, also called a blast cell or simply blast, is a partially differentiated cell, usually referred to as a unipotent cell that has lost most of its stem cell properties. A precursor cell is also known as a pro ...
has paved the way for the possibility of a cell replacement therapy that could ameliorate clinical symptoms in affected patients. In recent years, scientists have provided evidence for the existence of neural stem cells with the potential to produce new neurons, particularly of a dopaminergic phenotype, in the adult mammalian brain. Experimental depletion of dopamine in rodents decreases precursor cell proliferation in both the subependymal zone and the subgranular zone. Proliferation is restored completely by a selective agonist of D2-like (D2L) receptors. Neural stem cells have been identified in the neurogenic brain regions, where neurogenesis is constitutively ongoing, but also in the non-neurogenic zones, such as the midbrain and the striatum, where neurogenesis is not thought to occur under normal physiological conditions. Newer research has shown that there in fact is neurogenesis in the striatum. A detailed understanding of the factors governing adult neural stem cells ''in vivo'' may ultimately lead to elegant cell therapies for neurodegenerative disorders such as Parkinson's disease by mobilizing autologous endogenous neural stem cells to replace degenerated neurons.


Traumatic brain injury

Traumatic brain injuries vary in their mechanism of injury, producing a blunt or penetrating trauma resulting in a primary and secondary injury with
excitotoxicity In excitotoxicity, nerve cells suffer damage or death when the levels of otherwise necessary and safe neurotransmitters such as glutamate become pathologically high, resulting in excessive stimulation of receptors. For example, when glutamate ...
and relatively wide spread neuronal death. Due to the overwhelming number of traumatic brain injuries as a result of the
War on Terror The war on terror, officially the Global War on Terrorism (GWOT), is an ongoing international counterterrorism military campaign initiated by the United States following the September 11 attacks. The main targets of the campaign are militant ...
, tremendous amounts of research have been placed towards a better understanding of the pathophysiology of traumatic brain injuries as well as
neuroprotective Neuroprotection refers to the relative preservation of neuronal structure and/or function. In the case of an ongoing insult (a neurodegenerative insult) the relative preservation of neuronal integrity implies a reduction in the rate of neuronal los ...
interventions and possible interventions prompting restorative neurogenesis. Hormonal interventions, such as progesterone, estrogen, and allopregnanolone have been examined heavily in recent decades as possible neuroprotective agents following traumatic brain injuries to reduce the inflammation response stunt neuronal death. In rodents, lacking the regenerative capacity for adult neurogenesis, the activation of stem cells following administration of α7 nicotinic acetylcholine receptor agonist, PNU-282987, has been identified in damaged retinas with follow-up work examining activation of neurogenesis in mammals after traumatic brain injury. Currently, there is no medical intervention that has passed phase-III clinical trials for use in the human population.


Factors affecting


Changes in old age

Neurogenesis is substantially reduced in the hippocampus of aged animals, raising the possibility that it may be linked to age-related declines in hippocampal function. For example, the rate of neurogenesis in aged animals is predictive of memory. However, new born cells in aged animals are functionally integrated. Given that neurogenesis occurs throughout life, it might be expected that the hippocampus would steadily increase in size during adulthood, and that therefore the number of granule cells would be increased in aged animals. However, this is not the case, indicating that proliferation is balanced by cell death. Thus, it is not the addition of new neurons into the hippocampus that seems to be linked to hippocampal functions, but rather the rate of turnover of granule cells.


Effects of exercise

Scientists have shown that physical activity in the form of voluntary exercise results in an increase in the number of newborn neurons in the hippocampus of mice and rats. These and other studies have shown that learning in both species can be enhanced by physical exercise. Recent research has shown that
brain-derived neurotrophic factor Brain-derived neurotrophic factor (BDNF), or abrineurin, is a protein found in the and the periphery. that, in humans, is encoded by the ''BDNF'' gene. BDNF is a member of the neurotrophin family of growth factors, which are related to the canon ...
and
insulin-like growth factor 1 Insulin-like growth factor 1 (IGF-1), also called somatomedin C, is a hormone similar in molecular structure to insulin which plays an important role in childhood growth, and has anabolic effects in adults. IGF-1 is a protein that in humans ...
are key mediators of exercise-induced neurogenesis. Exercise increases the production of BDNF, as well as the NR2B subunit of the NMDA receptor. Exercise increases the uptake of IGF-1 from the bloodstream into various brain regions, including the hippocampus. In addition, IGF-1 alters c-fos expression in the hippocampus. When IGF-1 is blocked, exercise no longer induces neurogenesis. Other research demonstrated that exercising mice that did not produce beta-endorphin, a mood-elevating hormone, had no change in neurogenesis. Yet, mice that did produce this hormone, along with exercise, exhibited an increase in newborn cells and their rate of survival. While the association between exercise-mediated neurogenesis and enhancement of learning remains unclear, this study could have strong implications in the fields of aging and/or Alzheimer's disease.


Effects of cannabinoids

Some studies have shown that the stimulation of the
cannabinoid Cannabinoids () are several structural classes of compounds found in the cannabis plant primarily and most animal organisms (although insects lack such receptors) or as synthetic compounds. The most notable cannabinoid is the phytocannabinoid tet ...
s results in the growth of new nerve cells in the hippocampus from both embryonic and adult stem cells. In 2005 a clinical study of rats at the University of Saskatchewan showed regeneration of nerve cells in the hippocampus. Studies have shown that a synthetic drug resembling
THC Tetrahydrocannabinol (THC) is the principal psychoactive constituent of cannabis and one of at least 113 total cannabinoids identified on the plant. Although the chemical formula for THC (C21H30O2) describes multiple isomers, the term ''THC' ...
, the main psychoactive ingredient in marijuana, provides some protection against brain inflammation, which might result in better memory at an older age. This is due to receptors in the system that can also influence the production of new neurons. Nonetheless, a study directed at Rutgers University demonstrated how synchronization of action potentials in the hippocampus of rats was altered after THC administration. Lack of synchronization corresponded with impaired performance in a standard test of memory. Recent studies indicate that a natural cannabinoid of cannabis, cannabidiol (CBD), increases adult neurogenesis while having no effect on learning. THC however impaired learning and had no effect on neurogenesis. A greater CBD to THC ratio in hair analyses of cannabis users correlates with protection against gray matter reduction in the right hippocampus. CBD has also been observed to attenuate the deficits in prose recall and visuo-spatial associative memory of those currently under the influence of cannabis, implying neuroprotective effects against heavy THC exposure. Neurogenesis might play a role in its neuroprotective effects, but further research is required. A few studies have reported a positive association between THC and hippocampal neurogenesis. Some of them hypotethize a biphasic effect, some of them express that part of the negative effects could be attributable to neuroadaptation due to exposure at a specific period of life, and that it could be reversed.


Regulation

Many factors may affect the rate of hippocampal neurogenesis. Exercise and an enriched environment have been shown to promote the survival of neurons and the successful integration of newborn cells into the existing hippocampus. Another factor is
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all p ...
injury since neurogenesis occurs after
cerebral ischemia Brain ischemia is a condition in which there is insufficient bloodflow to the brain to meet metabolic demand. This leads to poor oxygen supply or cerebral hypoxia and thus leads to the death of brain tissue or cerebral infarction/ischemic stroke. ...
,
epileptic seizure An epileptic seizure, informally known as a seizure, is a period of symptoms due to abnormally excessive or synchronous neuronal activity in the brain. Outward effects vary from uncontrolled shaking movements involving much of the body with los ...
s, and bacterial meningitis. On the other hand, conditions such as
chronic stress Chronic stress is the physiological or psychological response induced by a long-term internal or external stressor. The stressor, either physically present or recollected, will produce the same effect and trigger a chronic stress response. There i ...
, viral infection and aging can result in a decreased neuronal proliferation. Circulating factors within the blood may reduce neurogenesis. In healthy aging humans, the plasma and cerebrospinal fluid levels of certain chemokines are elevated. In a mouse model, plasma levels of these chemokines correlate with reduced neurogenesis, suggesting that neurogenesis may be modulated by certain global age-dependent systemic changes. These chemokines include
CCL11 C-C motif chemokine 11 also known as eosinophil chemotactic protein and eotaxin-1 is a protein that in humans is encoded by the CCL11 gene. This gene is encoded on three exons and is located on chromosome 17. Function CCL11 is a small cytokine ...
,
CCL2 ''For the ICAO airport code see Candle Lake Airpark, for the diradical compound see Dichlorocarbene.'' The chemokine (C-C motif) ligand 2 (CCL2) is also referred to as monocyte chemoattractant protein 1 (MCP1) and small inducible cytokine A2. C ...
and CCL12, which are highly localized on mouse and human chromosomes, implicating a genetic locus in aging. Another study implicated the cytokine, IL-1beta, which is produced by glia. That study found that blocking IL-1 could partially prevent the severe impairment of neurogenesis caused by a viral infection. Epigenetic regulation also plays a large role in neurogenesis. DNA methylation is critical in the fate-determination of adult neural stem cells in the
subventricular zone The subventricular zone (SVZ) is a region situated on the outside wall of each lateral ventricle of the vertebrate brain. It is present in both the embryonic and adult brain. In embryonic life, the SVZ refers to a secondary proliferative zone ...
for post-natal neurogenesis through the regulation of neuronic genes such as ''Dlx2'', ''Neurog2'', and ''Sp8''. Many
microRNA MicroRNA (miRNA) are small, single-stranded, non-coding RNA molecules containing 21 to 23 nucleotides. Found in plants, animals and some viruses, miRNAs are involved in RNA silencing and post-transcriptional regulation of gene expression. mi ...
s such as miR-124 and miR-9 have been shown to influence cortical size and layering during development.


History

Early neuroanatomists, including Santiago Ramón y Cajal, considered the nervous system fixed and incapable of regeneration. The first evidence of adult mammalian neurogenesis in the
cerebral cortex The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. The cerebral cortex mostly consists of the six-layered neocortex, with just 10% consistin ...
was presented by Joseph Altman in 1962, followed by a demonstration of adult neurogenesis in the dentate gyrus of the hippocampus in 1963. In 1969, Joseph Altman discovered and named the
rostral migratory stream The rostral migratory stream (RMS) is a specialized migratory route found in the brain of some animals along which neuronal precursors that originated in the subventricular zone (SVZ) of the brain migrate to reach the main olfactory bulb (OB ...
as the source of adult generated granule cell neurons in the olfactory bulb. Up until the 1980s, the scientific community ignored these findings despite use of the most direct method of demonstrating cell proliferation in the early studies, i.e. 3H-thymidine autoradiography. By that time, Shirley Bayer (and Michael Kaplan) again showed that adult neurogenesis exists in mammals (rats), and Nottebohm showed the same phenomenon in birds sparking renewed interest in the topic. Studies in the 1990s finally put research on adult neurogenesis into a mainstream pursuit. Also in the early 1990s hippocampal neurogenesis was demonstrated in non-human primates and humans. More recently, neurogenesis in the cerebellum of adult rabbits has also been characterized. Further, some authors (particularly Elizabeth Gould) have suggested that adult neurogenesis may also occur in regions within the brain not generally associated with neurogenesis including the neocortex. However, others have questioned the scientific evidence of these findings, arguing that the new cells may be of glial origin. Recent research has elucidated the regulatory effect of GABA on neural stem cells. GABA's well-known inhibitory effects across the brain also affect the local circuitry that triggers a stem cell to become dormant. They found that
diazepam Diazepam, first marketed as Valium, is a medicine of the benzodiazepine family that acts as an anxiolytic. It is commonly used to treat a range of conditions, including anxiety, seizures, alcohol withdrawal syndrome, muscle spasms, insomnia, ...
(Valium) has a similar effect.


See also

* Artificial neural membrane * Neural development *
Neuroplasticity Neuroplasticity, also known as neural plasticity, or brain plasticity, is the ability of neural networks in the brain to change through growth and reorganization. It is when the brain is rewired to function in some way that differs from how it p ...
* Neurotrophin * Neurulation * Gliogenesis *
Noogenesis The noosphere (alternate spelling noösphere) is a philosophical concept developed and popularized by the Russian-Ukrainian Soviet biogeochemist Vladimir Vernadsky, and the French philosopher and Jesuit priest Pierre Teilhard de Chardin. Vernad ...
* Adult neurogenesis in songbirds


References

;Notes * Aimone JB, Jessberger S, and Gage FH (2007) Adult Neurogenesis. Scholarpedia, p. 8739 * * * * * * Rolls, E.T & Treves, A. (1998). Neural Networks and Brain Function. Oxford: OUP. . * * * *


External links


Concise introduction to neurogenesis
from Wellesley College
Comprehensive website on neurogenesis
from
Lafayette College Lafayette College is a private liberal arts college in Easton, Pennsylvania. Founded in 1826 by James Madison Porter and other citizens in Easton, the college first held classes in 1832. The founders voted to name the college after General Laf ...

Early literature on adult neurogenesis

Neurogenesis in adult brain - Fred H. Gage and Henriette van Praag

"Neurogenesis and Parkinson´s disease"

Scholarpedia Article on Adult Neurogenesis

"Trends in Neurosciences, 10 October 2001 (Michael S. Kaplan MD, PhD)


* ttp://www.michaelspecter.com/2001/07/rethinking-the-brain/ Michael Specter: Rethinking the Brain- How the songs of canaries upset a fundamental principle of science
The Neurogenesis Experiment
- Article series on adult human neurogenesis
Seed magazine: The Reinvention of the Self
- A historical background on the field of neurogenesis and implications of this research
BBC Radio 4: The Memory Experience
- Use it or Lose it

- Grow Your Own Brain

New York Times, 19 August 2007. * {{Neurotrophinergics Neuropsychology Stem cells Developmental neuroscience