
Autocorrelation, sometimes known as serial correlation in the
discrete time case, is the
correlation of a
signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations of a
random variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
as a function of the time lag between them. The analysis of autocorrelation is a mathematical tool for finding repeating patterns, such as the presence of a
periodic signal obscured by
noise, or identifying the
missing fundamental frequency
A harmonic sound is said to have a missing fundamental, suppressed fundamental, or phantom fundamental when its overtones suggest a fundamental frequency but the sound lacks a component at the fundamental frequency itself.
The brain perceives the ...
in a signal implied by its
harmonic frequencies. It is often used in
signal processing
Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing '' signals'', such as sound, images, and scientific measurements. Signal processing techniques are used to optimize transmissions, ...
for analyzing functions or series of values, such as
time domain signals.
Different fields of study define autocorrelation differently, and not all of these definitions are equivalent. In some fields, the term is used interchangeably with
autocovariance.
Unit root processes,
trend-stationary processes,
autoregressive processes, and
moving average process
In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. The moving-average model specifies that the output variable is cross-correlated with a ...
es are specific forms of processes with autocorrelation.
Auto-correlation of stochastic processes
In
statistics
Statistics (from German: '' Statistik'', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, indust ...
, the autocorrelation of a real or complex
random process is the
Pearson correlation
In statistics, the Pearson correlation coefficient (PCC, pronounced ) ― also known as Pearson's ''r'', the Pearson product-moment correlation coefficient (PPMCC), the bivariate correlation, or colloquially simply as the correlation coefficient ...
between values of the process at different times, as a function of the two times or of the time lag. Let
be a random process, and
be any point in time (
may be an
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
for a
discrete-time process or a
real number
In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
for a
continuous-time process). Then
is the value (or
realization) produced by a given
run
Run(s) or RUN may refer to:
Places
* Run (island), one of the Banda Islands in Indonesia
* Run (stream), a stream in the Dutch province of North Brabant
People
* Run (rapper), Joseph Simmons, now known as "Reverend Run", from the hip-hop group ...
of the process at time
. Suppose that the process has
mean
There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value ( magnitude and sign) of a given data set.
For a data set, the '' ari ...
and
variance
In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of number ...
at time
, for each
. Then the definition of the auto-correlation function between times
and
is
[Kun Il Park, Fundamentals of Probability and Stochastic Processes with Applications to Communications, Springer, 2018, ]
where
is the
expected value
In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a ...
operator and the bar represents
complex conjugation. Note that the expectation may not be
well defined.
Subtracting the mean before multiplication yields the auto-covariance function between times
and
:
[
Note that this expression is not well defined for all time series or processes, because the mean may not exist, or the variance may be zero (for a constant process) or infinite (for processes with distribution lacking well-behaved moments, such as certain types of ]power law
In statistics, a power law is a Function (mathematics), functional relationship between two quantities, where a Relative change and difference, relative change in one quantity results in a proportional relative change in the other quantity, inde ...
).
Definition for wide-sense stationary stochastic process
If is a wide-sense stationary process then the mean and the variance are time-independent, and further the autocovariance function depends only on the lag between and : the autocovariance depends only on the time-distance between the pair of values but not on their position in time. This further implies that the autocovariance and auto-correlation can be expressed as a function of the time-lag, and that this would be an even function of the lag . This gives the more familiar forms for the auto-correlation function[
and the auto-covariance function:
In particular, note that
]
Normalization
It is common practice in some disciplines (e.g. statistics and time series analysis) to normalize the autocovariance function to get a time-dependent Pearson correlation coefficient. However, in other disciplines (e.g. engineering) the normalization is usually dropped and the terms "autocorrelation" and "autocovariance" are used interchangeably.
The definition of the auto-correlation coefficient of a stochastic process is[
If the function is well defined, its value must lie in the range ]