HOME

TheInfoList



OR:

Area is the
quantity Quantity or amount is a property that can exist as a multitude or magnitude, which illustrate discontinuity and continuity. Quantities can be compared in terms of "more", "less", or "equal", or by assigning a numerical value multiple of a uni ...
that expresses the extent of a
region In geography, regions, otherwise referred to as zones, lands or territories, are areas that are broadly divided by physical characteristics (physical geography), human impact characteristics (human geography), and the interaction of humanity and t ...
on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a
shape A shape or figure is a graphical representation of an object or its external boundary, outline, or external surface, as opposed to other properties such as color, texture, or material type. A plane shape or plane figure is constrained to lie on ...
or
planar lamina In mathematics, a planar lamina (or plane lamina) is a figure representing a thin, usually uniform, flat layer of the solid. It serves also as an idealized model of a planar cross section of a solid body in integration. Planar laminas can be use ...
, while ''
surface area The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of ...
'' refers to the area of an open surface or the boundary of a three-dimensional object. Area can be understood as the amount of material with a given thickness that would be necessary to fashion a model of the shape, or the amount of
paint Paint is any pigmented liquid, liquefiable, or solid mastic composition that, after application to a substrate in a thin layer, converts to a solid film. It is most commonly used to protect, color, or provide texture. Paint can be made in many ...
necessary to cover the surface with a single coat. It is the two-dimensional analogue of the
length Length is a measure of distance. In the International System of Quantities, length is a quantity with dimension distance. In most systems of measurement a base unit for length is chosen, from which all other units are derived. In the Inte ...
of a
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
(a one-dimensional concept) or the
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ...
of a solid (a three-dimensional concept). The area of a shape can be measured by comparing the shape to
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90-degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
s of a fixed size. In the International System of Units (SI), the standard unit of area is the square metre (written as m2), which is the area of a square whose sides are one
metre The metre ( British spelling) or meter ( American spelling; see spelling differences) (from the French unit , from the Greek noun , "measure"), symbol m, is the primary unit of length in the International System of Units (SI), though its p ...
long. A shape with an area of three square metres would have the same area as three such squares. In mathematics, the
unit square In mathematics, a unit square is a square whose sides have length . Often, ''the'' unit square refers specifically to the square in the Cartesian plane with corners at the four points ), , , and . Cartesian coordinates In a Cartesian coordina ...
is defined to have area one, and the area of any other shape or surface is a
dimensionless A dimensionless quantity (also known as a bare quantity, pure quantity, or scalar quantity as well as quantity of dimension one) is a quantity to which no physical dimension is assigned, with a corresponding SI unit of measurement of one (or 1) ...
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
. There are several well-known formulas for the areas of simple shapes such as
triangle A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- colli ...
s, rectangles, and
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
s. Using these formulas, the area of any
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed '' polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two t ...
can be found by dividing the polygon into triangles. For shapes with curved boundary,
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a major motivation for the historical development of calculus. For a solid shape such as a
sphere A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
, cone, or cylinder, the area of its boundary surface is called the
surface area The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of ...
. Formulas for the surface areas of simple shapes were computed by the
ancient Greeks Ancient Greece ( el, Ἑλλάς, Hellás) was a northeastern Mediterranean civilization, existing from the Greek Dark Ages of the 12th–9th centuries BC to the end of classical antiquity ( AD 600), that comprised a loose collection of cult ...
, but computing the surface area of a more complicated shape usually requires
multivariable calculus Multivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving several variables, rather t ...
. Area plays an important role in modern mathematics. In addition to its obvious importance in
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
and calculus, area is related to the definition of
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if ...
s in
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matric ...
, and is a basic property of surfaces in differential geometry. do Carmo, Manfredo (1976). ''Differential Geometry of Curves and Surfaces''. Prentice-Hall. p. 98, In
analysis Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (3 ...
, the area of a subset of the plane is defined using
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides ...
,Walter Rudin (1966). ''Real and Complex Analysis'', McGraw-Hill, . though not every subset is measurable. In general, area in higher mathematics is seen as a special case of volume for two-dimensional regions. Area can be defined through the use of axioms, defining it as a function of a collection of certain plane figures to the set of real numbers. It can be proved that such a function exists.


Formal definition

An approach to defining what is meant by "area" is through
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy o ...
s. "Area" can be defined as a function from a collection M of a special kinds of plane figures (termed measurable sets) to the set of real numbers, which satisfies the following properties: * For all ''S'' in ''M'', . * If ''S'' and ''T'' are in ''M'' then so are and , and also . * If ''S'' and ''T'' are in ''M'' with then is in ''M'' and . * If a set ''S'' is in ''M'' and ''S'' is congruent to ''T'' then ''T'' is also in ''M'' and . * Every rectangle ''R'' is in ''M''. If the rectangle has length ''h'' and breadth ''k'' then . * Let ''Q'' be a set enclosed between two step regions ''S'' and ''T''. A step region is formed from a finite union of adjacent rectangles resting on a common base, i.e. . If there is a unique number ''c'' such that for all such step regions ''S'' and ''T'', then . It can be proved that such an area function actually exists.


Units

Every
unit of length A unit of length refers to any arbitrarily chosen and accepted reference standard for measurement of length. The most common units in modern use are the metric units, used in every country globally. In the United States the U.S. customary uni ...
has a corresponding unit of area, namely the area of a square with the given side length. Thus areas can be measured in square metres (m2), square centimetres (cm2), square millimetres (mm2),
square kilometre Square kilometre ( International spelling as used by the International Bureau of Weights and Measures) or square kilometer (American spelling), symbol km2, is a multiple of the square metre, the SI unit of area or surface area. 1 km2 is ...
s (km2), square feet (ft2),
square yard The square yard (Northern India: gaj, Pakistan: gaz) is an imperial unit and U.S. customary unit of area. It is in widespread use in most of the English-speaking world, particularly the United States, United Kingdom, Canada, Pakistan and India ...
s (yd2),
square mile The square mile (abbreviated as sq mi and sometimes as mi2)Rowlett, Russ (September 1, 2004) University of North Carolina at Chapel Hill. Retrieved February 22, 2012. is an imperial and US unit of measure for area. One square mile is an are ...
s (mi2), and so forth. Algebraically, these units can be thought of as the squares of the corresponding length units. The SI unit of area is the square metre, which is considered an
SI derived unit SI derived units are units of measurement derived from the seven base units specified by the International System of Units (SI). They can be expressed as a product (or ratio) of one or more of the base units, possibly scaled by an appropriate ...
.


Conversions

Calculation of the area of a square whose length and width are 1 metre would be: 1 metre × 1 metre = 1 m2 and so, a rectangle with different sides (say length of 3 metres and width of 2 metres) would have an area in square units that can be calculated as: 3 metres × 2 metres = 6 m2. This is equivalent to 6 million square millimetres. Other useful conversions are: * 1 square kilometre = 1,000,000 square metres * 1 square metre =
10,000 10,000 (ten thousand) is the natural number following 9,999 and preceding 10,001. Name Many languages have a specific word for this number: in Ancient Greek it is (the etymological root of the word myriad in English), in Aramaic , in Hebrew ...
square centimetres = 1,000,000 square millimetres * 1 square centimetre =
100 100 or one hundred (Roman numeral: C) is the natural number following 99 and preceding 101. In medieval contexts, it may be described as the short hundred or five score in order to differentiate the English and Germanic use of "hundred" to de ...
square millimetres.


Non-metric units

In non-metric units, the conversion between two square units is the
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90-degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
of the conversion between the corresponding length units. :1
foot The foot ( : feet) is an anatomical structure found in many vertebrates. It is the terminal portion of a limb which bears weight and allows locomotion. In many animals with feet, the foot is a separate organ at the terminal part of the leg mad ...
= 12
inch Measuring tape with inches The inch (symbol: in or ″) is a unit of length in the British imperial and the United States customary systems of measurement. It is equal to yard or of a foot. Derived from the Roman uncia ("twelft ...
es, the relationship between square feet and square inches is :1 square foot = 144 square inches, where 144 = 122 = 12 × 12. Similarly: * 1 square yard = 9 square feet * 1 square mile = 3,097,600 square yards = 27,878,400 square feet In addition, conversion factors include: * 1 square inch = 6.4516 square centimetres * 1 square foot = square metres * 1 square yard = square metres * 1 square mile = square kilometres


Other units including historical

There are several other common units for area. The
are Are commonly refers to: * Are (unit), a unit of area equal to 100 m2 Are, ARE or Åre may also refer to: Places * Åre, a locality in Sweden * Åre Municipality, a municipality in Sweden **Åre ski resort in Sweden * Are Parish, a municipa ...
was the original unit of area in the
metric system The metric system is a system of measurement that succeeded the decimalised system based on the metre that had been introduced in France in the 1790s. The historical development of these systems culminated in the definition of the Intern ...
, with: * 1 are = 100 square metres Though the are has fallen out of use, the
hectare The hectare (; SI symbol: ha) is a non-SI metric unit of area equal to a square with 100- metre sides (1 hm2), or 10,000 m2, and is primarily used in the measurement of land. There are 100 hectares in one square kilometre. An acre is ...
is still commonly used to measure land: Chapter 5. * 1 hectare = 100 ares = 10,000 square metres = 0.01 square kilometres Other uncommon metric units of area include the tetrad, the hectad, and the
myriad A myriad (from Ancient Greek grc, μυριάς, translit=myrias, label=none) is technically the number 10,000 (ten thousand); in that sense, the term is used in English almost exclusively for literal translations from Greek, Latin or Sinospheri ...
. The
acre The acre is a unit of land area used in the imperial and US customary systems. It is traditionally defined as the area of one chain by one furlong (66 by 660 feet), which is exactly equal to 10 square chains, of a square mile, 4,840 square ...
is also commonly used to measure land areas, where * 1 acre = 4,840 square yards = 43,560 square feet. An acre is approximately 40% of a hectare. On the atomic scale, area is measured in units of barns, such that: * 1 barn = 10−28 square meters. The barn is commonly used in describing the cross-sectional area of interaction in
nuclear physics Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the ...
. In
India India, officially the Republic of India ( Hindi: ), is a country in South Asia. It is the seventh-largest country by area, the second-most populous country, and the most populous democracy in the world. Bounded by the Indian Ocean on the ...
, * 20 dhurki = 1 dhur * 20 dhur = 1 khatha * 20 khata = 1
bigha The bigha (also formerly beegah) is a traditional unit of measurement of area of a land, commonly used in India (including Uttarakhand, Haryana, Himachal Pradesh, Punjab, Madhya Pradesh, Uttar Pradesh, Bihar, Jharkhand, West Bengal, Assam, Gujarat ...
* 32 khata = 1 acre


History


Circle area

In the 5th century BCE,
Hippocrates of Chios Hippocrates of Chios ( grc-gre, Ἱπποκράτης ὁ Χῖος; c. 470 – c. 410 BC) was an ancient Greek mathematician, geometer, and astronomer. He was born on the isle of Chios, where he was originally a merchant. After some misadv ...
was the first to show that the area of a disk (the region enclosed by a circle) is proportional to the square of its diameter, as part of his quadrature of the
lune of Hippocrates In geometry, the lune of Hippocrates, named after Hippocrates of Chios, is a lune bounded by arcs of two circles, the smaller of which has as its diameter a chord spanning a right angle on the larger circle. Equivalently, it is a non-convex p ...
, but did not identify the
constant of proportionality In mathematics, two sequences of numbers, often experimental data, are proportional or directly proportional if their corresponding elements have a constant ratio, which is called the coefficient of proportionality or proportionality consta ...
.
Eudoxus of Cnidus Eudoxus of Cnidus (; grc, Εὔδοξος ὁ Κνίδιος, ''Eúdoxos ho Knídios''; ) was an ancient Greek astronomer, mathematician, scholar, and student of Archytas and Plato. All of his original works are lost, though some fragments a ...
, also in the 5th century BCE, also found that the area of a disk is proportional to its radius squared. Subsequently, Book I of Euclid's ''Elements'' dealt with equality of areas between two-dimensional figures. The mathematician
Archimedes Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scienti ...
used the tools of
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the ''Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
to show that the area inside a circle is equal to that of a
right triangle A right triangle (American English) or right-angled triangle ( British), or more formally an orthogonal triangle, formerly called a rectangled triangle ( grc, ὀρθόσγωνία, lit=upright angle), is a triangle in which one angle is a right ...
whose base has the length of the circle's circumference and whose height equals the circle's radius, in his book '' Measurement of a Circle''. (The circumference is 2''r'', and the area of a triangle is half the base times the height, yielding the area ''r''2 for the disk.) Archimedes approximated the value of π (and hence the area of a unit-radius circle) with his doubling method, in which he inscribed a regular triangle in a circle and noted its area, then doubled the number of sides to give a regular
hexagon In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A ''regular hexagon'' h ...
, then repeatedly doubled the number of sides as the polygon's area got closer and closer to that of the circle (and did the same with circumscribed polygons). Swiss scientist
Johann Heinrich Lambert Johann Heinrich Lambert (, ''Jean-Henri Lambert'' in French; 26 or 28 August 1728 – 25 September 1777) was a polymath from the Republic of Mulhouse, generally referred to as either Swiss or French, who made important contributions to the subjec ...
in 1761 proved that π, the ratio of a circle's area to its squared radius, is
irrational Irrationality is cognition, thinking, talking, or acting without inclusion of rationality. It is more specifically described as an action or opinion given through inadequate use of reason, or through emotional distress or cognitive deficiency. ...
, meaning it is not equal to the quotient of any two whole numbers. English translation by Catriona and David Lischka. In 1794, French mathematician
Adrien-Marie Legendre Adrien-Marie Legendre (; ; 18 September 1752 – 9 January 1833) was a French mathematician who made numerous contributions to mathematics. Well-known and important concepts such as the Legendre polynomials and Legendre transformation are nam ...
proved that π2 is irrational; this also proves that π is irrational. In 1882, German mathematician
Ferdinand von Lindemann Carl Louis Ferdinand von Lindemann (12 April 1852 – 6 March 1939) was a German mathematician, noted for his proof, published in 1882, that (pi) is a transcendental number, meaning it is not a root of any polynomial with rational coef ...
proved that π is
transcendental Transcendence, transcendent, or transcendental may refer to: Mathematics * Transcendental number, a number that is not the root of any polynomial with rational coefficients * Algebraic element or transcendental element, an element of a field exten ...
(not the solution of any
polynomial equation In mathematics, an algebraic equation or polynomial equation is an equation of the form :P = 0 where ''P'' is a polynomial with coefficients in some field, often the field of the rational numbers. For many authors, the term ''algebraic equati ...
with rational coefficients), confirming a conjecture made by both Legendre and Euler.


Triangle area

Heron (or Hero) of Alexandria found what is known as Heron's formula for the area of a triangle in terms of its sides, and a proof can be found in his book, ''Metrica'', written around 60 CE. It has been suggested that
Archimedes Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scienti ...
knew the formula over two centuries earlier, and since ''Metrica'' is a collection of the mathematical knowledge available in the ancient world, it is possible that the formula predates the reference given in that work. In 499
Aryabhata Aryabhata ( ISO: ) or Aryabhata I (476–550 CE) was an Indian mathematician and astronomer of the classical age of Indian mathematics and Indian astronomy. He flourished in the Gupta Era and produced works such as the '' Aryabhatiya'' (whi ...
, a great
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
-
astronomer An astronomer is a scientist in the field of astronomy who focuses their studies on a specific question or field outside the scope of Earth. They observe astronomical objects such as stars, planets, moons, comets and galaxies – in either o ...
from the classical age of
Indian mathematics Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics (400 CE to 1200 CE), important contributions were made by scholars like Aryabhata, Brahmagupt ...
and
Indian astronomy Astronomy has long history in Indian subcontinent stretching from pre-historic to modern times. Some of the earliest roots of Indian astronomy can be dated to the period of Indus Valley civilisation or earlier. Astronomy later developed as a di ...
, expressed the area of a triangle as one-half the base times the height in the '' Aryabhatiya'' (section 2.6). A formula equivalent to Heron's was discovered by the Chinese independently of the Greeks. It was published in 1247 in ''Shushu Jiuzhang'' (" Mathematical Treatise in Nine Sections"), written by Qin Jiushao.


Quadrilateral area

In the 7th century CE,
Brahmagupta Brahmagupta ( – ) was an Indian mathematician and astronomer. He is the author of two early works on mathematics and astronomy: the '' Brāhmasphuṭasiddhānta'' (BSS, "correctly established doctrine of Brahma", dated 628), a theoretical tr ...
developed a formula, now known as Brahmagupta's formula, for the area of a
cyclic quadrilateral In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the ''circumcircle'' or ''circumscribed circle'', and the vertices are said to be '' ...
(a
quadrilateral In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''latus'', meaning "side". It is also called a tetragon, ...
inscribed in a circle) in terms of its sides. In 1842, the German mathematicians Carl Anton Bretschneider and Karl Georg Christian von Staudt independently found a formula, known as Bretschneider's formula, for the area of any quadrilateral.


General polygon area

The development of
Cartesian coordinates A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured i ...
by
René Descartes René Descartes ( or ; ; Latinized: Renatus Cartesius; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and science. Mathe ...
in the 17th century allowed the development of the
surveyor's formula The shoelace formula, shoelace algorithm, or shoelace method (also known as Gauss's area formula and the surveyor's formula) is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian co ...
for the area of any polygon with known
vertex Vertex, vertices or vertexes may refer to: Science and technology Mathematics and computer science *Vertex (geometry), a point where two or more curves, lines, or edges meet *Vertex (computer graphics), a data structure that describes the position ...
locations by
Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
in the 19th century.


Areas determined using calculus

The development of
integral calculus In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with di ...
in the late 17th century provided tools that could subsequently be used for computing more complicated areas, such as the area of an ellipse and the
surface area The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of ...
s of various curved three-dimensional objects.


Area formulas


Polygon formulas

For a non-self-intersecting ( simple) polygon, the
Cartesian coordinates A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured i ...
(x_i, y_i) (''i''=0, 1, ..., ''n''-1) of whose ''n'' vertices are known, the area is given by the
surveyor's formula The shoelace formula, shoelace algorithm, or shoelace method (also known as Gauss's area formula and the surveyor's formula) is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian co ...
: :A = \frac \Biggl\vert \sum_^( x_i y_ - x_ y_i) \Biggr\vert where when ''i''=''n''-1, then ''i''+1 is expressed as modulus ''n'' and so refers to 0.


Rectangles

The most basic area formula is the formula for the area of a rectangle. Given a rectangle with length and width , the formula for the area is: :  (rectangle). That is, the area of the rectangle is the length multiplied by the width. As a special case, as in the case of a square, the area of a square with side length is given by the formula: :  (square). The formula for the area of a rectangle follows directly from the basic properties of area, and is sometimes taken as a
definition A definition is a statement of the meaning of a term (a word, phrase, or other set of symbols). Definitions can be classified into two large categories: intensional definitions (which try to give the sense of a term), and extensional definitio ...
or
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy o ...
. On the other hand, if
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
is developed before
arithmetic Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th c ...
, this formula can be used to define
multiplication Multiplication (often denoted by the cross symbol , by the mid-line dot operator , by juxtaposition, or, on computers, by an asterisk ) is one of the four elementary mathematical operations of arithmetic, with the other ones being ad ...
of
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s.


Dissection, parallelograms, and triangles

Most other simple formulas for area follow from the method of
dissection Dissection (from Latin ' "to cut to pieces"; also called anatomization) is the dismembering of the body of a deceased animal or plant to study its anatomical structure. Autopsy is used in pathology and forensic medicine to determine the cause ...
. This involves cutting a shape into pieces, whose areas must
sum Sum most commonly means the total of two or more numbers added together; see addition. Sum can also refer to: Mathematics * Sum (category theory), the generic concept of summation in mathematics * Sum, the result of summation, the additio ...
to the area of the original shape. For an example, any
parallelogram In Euclidean geometry, a parallelogram is a simple (non- self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of eq ...
can be subdivided into a
trapezoid A quadrilateral with at least one pair of parallel sides is called a trapezoid () in American and Canadian English. In British and other forms of English, it is called a trapezium (). A trapezoid is necessarily a convex quadrilateral in Eucli ...
and a
right triangle A right triangle (American English) or right-angled triangle ( British), or more formally an orthogonal triangle, formerly called a rectangled triangle ( grc, ὀρθόσγωνία, lit=upright angle), is a triangle in which one angle is a right ...
, as shown in figure to the left. If the triangle is moved to the other side of the trapezoid, then the resulting figure is a rectangle. It follows that the area of the parallelogram is the same as the area of the rectangle: :  (parallelogram). However, the same parallelogram can also be cut along a
diagonal In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Gree ...
into two congruent triangles, as shown in the figure to the right. It follows that the area of each
triangle A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- colli ...
is half the area of the parallelogram: :A = \fracbh  (triangle). Similar arguments can be used to find area formulas for the
trapezoid A quadrilateral with at least one pair of parallel sides is called a trapezoid () in American and Canadian English. In British and other forms of English, it is called a trapezium (). A trapezoid is necessarily a convex quadrilateral in Eucli ...
as well as more complicated
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed '' polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two t ...
s.


Area of curved shapes


Circles

The formula for the area of a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
(more properly called the area enclosed by a circle or the area of a disk) is based on a similar method. Given a circle of radius , it is possible to partition the circle into sectors, as shown in the figure to the right. Each sector is approximately triangular in shape, and the sectors can be rearranged to form an approximate parallelogram. The height of this parallelogram is , and the width is half the
circumference In geometry, the circumference (from Latin ''circumferens'', meaning "carrying around") is the perimeter of a circle or ellipse. That is, the circumference would be the arc length of the circle, as if it were opened up and straightened out t ...
of the circle, or . Thus, the total area of the circle is : :  (circle). Though the dissection used in this formula is only approximate, the error becomes smaller and smaller as the circle is partitioned into more and more sectors. The
limit Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2019 ...
of the areas of the approximate parallelograms is exactly , which is the area of the circle. This argument is actually a simple application of the ideas of
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
. In ancient times, the
method of exhaustion The method of exhaustion (; ) is a method of finding the area of a shape by inscribing inside it a sequence of polygons whose areas converge to the area of the containing shape. If the sequence is correctly constructed, the difference in area b ...
was used in a similar way to find the area of the circle, and this method is now recognized as a precursor to
integral calculus In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with di ...
. Using modern methods, the area of a circle can be computed using a
definite integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
: :A \;=\;2\int_^r \sqrt\,dx \;=\; \pi r^2.


Ellipses

The formula for the area enclosed by an ellipse is related to the formula of a circle; for an ellipse with semi-major and semi-minor axes and the formula is: :A = \pi xy .


Non-planar surface area

Most basic formulas for
surface area The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of ...
can be obtained by cutting surfaces and flattening them out (see: developable surfaces). For example, if the side surface of a
cylinder A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an infi ...
(or any prism) is cut lengthwise, the surface can be flattened out into a rectangle. Similarly, if a cut is made along the side of a cone, the side surface can be flattened out into a sector of a circle, and the resulting area computed. The formula for the surface area of a
sphere A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
is more difficult to derive: because a sphere has nonzero
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a surface at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. The Gaussian radius of curvature is the reciprocal of . F ...
, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by
Archimedes Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scienti ...
in his work '' On the Sphere and Cylinder''. The formula is: :  (sphere), where is the radius of the sphere. As with the formula for the area of a circle, any derivation of this formula inherently uses methods similar to
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
.


General formulas


Areas of 2-dimensional figures

* A
triangle A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- colli ...
: \tfrac12Bh (where ''B'' is any side, and ''h'' is the distance from the line on which ''B'' lies to the other vertex of the triangle). This formula can be used if the height ''h'' is known. If the lengths of the three sides are known then '' Heron's formula'' can be used: \sqrt where ''a'', ''b'', ''c'' are the sides of the triangle, and s = \tfrac12(a + b + c) is half of its perimeter. If an angle and its two included sides are given, the area is \tfrac12 a b \sin(C) where is the given angle and and are its included sides. If the triangle is graphed on a coordinate plane, a matrix can be used and is simplified to the absolute value of \tfrac12(x_1 y_2 + x_2 y_3 + x_3 y_1 - x_2 y_1 - x_3 y_2 - x_1 y_3). This formula is also known as the
shoelace formula The shoelace formula, shoelace algorithm, or shoelace method (also known as Gauss's area formula and the surveyor's formula) is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian co ...
and is an easy way to solve for the area of a coordinate triangle by substituting the 3 points ''(x1,y1)'', ''(x2,y2)'', and ''(x3,y3)''. The shoelace formula can also be used to find the areas of other polygons when their vertices are known. Another approach for a coordinate triangle is to use
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizati ...
to find the area. * A simple polygon constructed on a grid of equal-distanced points (i.e., points with
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
coordinates) such that all the polygon's vertices are grid points: i + \frac - 1, where ''i'' is the number of grid points inside the polygon and ''b'' is the number of boundary points. This result is known as
Pick's theorem In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary. The result was first described by Georg Alexander Pick in ...
.


Area in calculus

* The area between a positive-valued curve and the horizontal axis, measured between two values ''a'' and ''b'' (b is defined as the larger of the two values) on the horizontal axis, is given by the integral from ''a'' to ''b'' of the function that represents the curve: : A = \int_a^ f(x) \, dx. * The area between the graphs of two functions is
equal Equal(s) may refer to: Mathematics * Equality (mathematics). * Equals sign (=), a mathematical symbol used to indicate equality. Arts and entertainment * ''Equals'' (film), a 2015 American science fiction film * ''Equals'' (game), a board game ...
to the
integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
of one function, ''f''(''x''),
minus The plus and minus signs, and , are mathematical symbols used to represent the notions of positive and negative, respectively. In addition, represents the operation of addition, which results in a sum, while represents subtraction, resulti ...
the integral of the other function, ''g''(''x''): : A = \int_a^ ( f(x) - g(x) ) \, dx, where f(x) is the curve with the greater y-value. * An area bounded by a function r = r(\theta) expressed in
polar coordinates In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to t ...
is: :A = \int r^2 \, d\theta. * The area enclosed by a
parametric curve In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric o ...
\vec u(t) = (x(t), y(t)) with endpoints \vec u(t_0) = \vec u(t_1) is given by the
line integral In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms ''path integral'', ''curve integral'', and ''curvilinear integral'' are also used; '' contour integral'' is used as well, ...
s: :: \oint_^ x \dot y \, dt = - \oint_^ y \dot x \, dt = \oint_^ (x \dot y - y \dot x) \, dt : or the ''z''-component of :: \oint_^ \vec u \times \dot \, dt. :(For details, see .) This is the principle of the planimeter mechanical device.


Bounded area between two quadratic functions

To find the bounded area between two
quadratic function In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before 20th century, the distinction was unclear between a polynomi ...
s, we subtract one from the other to write the difference as :f(x)-g(x)=ax^2+bx+c=a(x-\alpha)(x-\beta) where ''f''(''x'') is the quadratic upper bound and ''g''(''x'') is the quadratic lower bound. Define the
discriminant In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the ori ...
of ''f''(''x'')-''g''(''x'') as :\Delta=b^2-4ac. By simplifying the integral formula between the graphs of two functions (as given in the section above) and using Vieta's formula, we can obtain :A=\frac=\frac(\beta-\alpha)^3,\qquad a\neq0. The above remains valid if one of the bounding functions is linear instead of quadratic.


Surface area of 3-dimensional figures

* Cone: \pi r\left(r + \sqrt\right), where ''r'' is the radius of the circular base, and ''h'' is the height. That can also be rewritten as \pi r^2 + \pi r l or \pi r (r + l) \,\! where ''r'' is the radius and ''l'' is the slant height of the cone. \pi r^2 is the base area while \pi r l is the lateral surface area of the cone. *
Cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the on ...
: 6s^2, where ''s'' is the length of an edge. *
Cylinder A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an infi ...
: 2\pi r(r + h), where ''r'' is the radius of a base and ''h'' is the height. The 2\pi r can also be rewritten as \pi d, where ''d'' is the diameter. * Prism: 2B + Ph, where ''B'' is the area of a base, ''P'' is the perimeter of a base, and ''h'' is the height of the prism. *
pyramid A pyramid (from el, πυραμίς ') is a structure whose outer surfaces are triangular and converge to a single step at the top, making the shape roughly a pyramid in the geometric sense. The base of a pyramid can be trilateral, quadrila ...
: B + \frac, where ''B'' is the area of the base, ''P'' is the perimeter of the base, and ''L'' is the length of the slant. * Rectangular prism: 2 (\ell w + \ell h + w h), where \ell is the length, ''w'' is the width, and ''h'' is the height.


General formula for surface area

The general formula for the surface area of the graph of a continuously differentiable function z=f(x,y), where (x,y)\in D\subset\mathbb^2 and D is a region in the xy-plane with the smooth boundary: : A=\iint_D\sqrt\,dx\,dy. An even more general formula for the area of the graph of a
parametric surface A parametric surface is a surface in the Euclidean space \R^3 which is defined by a parametric equation with two parameters Parametric representation is a very general way to specify a surface, as well as implicit representation. Surfaces that o ...
in the vector form \mathbf=\mathbf(u,v), where \mathbf is a continuously differentiable vector function of (u,v)\in D\subset\mathbb^2 is: : A=\iint_D \left, \frac\times\frac\\,du\,dv.


List of formulas

The above calculations show how to find the areas of many common shapes. The areas of irregular (and thus arbitrary) polygons can be calculated using the "
Surveyor's formula The shoelace formula, shoelace algorithm, or shoelace method (also known as Gauss's area formula and the surveyor's formula) is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian co ...
" (shoelace formula).


Relation of area to perimeter

The
isoperimetric inequality In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In n-dimensional space \R^n the inequality lower bounds the surface area or perimeter \operatorname(S) of a set S\subset\R^n ...
states that, for a closed curve of length ''L'' (so the region it encloses has
perimeter A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several pr ...
''L'') and for area ''A'' of the region that it encloses, :4\pi A \le L^2, and equality holds if and only if the curve is a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
. Thus a circle has the largest area of any closed figure with a given perimeter. At the other extreme, a figure with given perimeter ''L'' could have an arbitrarily small area, as illustrated by a
rhombus In plane Euclidean geometry, a rhombus (plural rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length. Th ...
that is "tipped over" arbitrarily far so that two of its
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the '' vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles ...
s are arbitrarily close to 0° and the other two are arbitrarily close to 180°. For a circle, the ratio of the area to the
circumference In geometry, the circumference (from Latin ''circumferens'', meaning "carrying around") is the perimeter of a circle or ellipse. That is, the circumference would be the arc length of the circle, as if it were opened up and straightened out t ...
(the term for the perimeter of a circle) equals half the
radius In classical geometry, a radius ( : radii) of a circle or sphere is any of the line segments from its center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', meaning ray but also the ...
''r''. This can be seen from the area formula ''πr''2 and the circumference formula 2''πr''. The area of a
regular polygon In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence ...
is half its perimeter times the apothem (where the apothem is the distance from the center to the nearest point on any side).


Fractals

Doubling the edge lengths of a polygon multiplies its area by four, which is two (the ratio of the new to the old side length) raised to the power of two (the dimension of the space the polygon resides in). But if the one-dimensional lengths of a
fractal In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as il ...
drawn in two dimensions are all doubled, the spatial content of the fractal scales by a power of two that is not necessarily an integer. This power is called the
fractal dimension In mathematics, more specifically in fractal geometry, a fractal dimension is a ratio providing a statistical index of complexity comparing how detail in a pattern (strictly speaking, a fractal pattern) changes with the scale at which it is meas ...
of the fractal.


Area bisectors

There are an infinitude of lines that bisect the area of a triangle. Three of them are the medians of the triangle (which connect the sides' midpoints with the opposite vertices), and these are concurrent at the triangle's
centroid In mathematics and physics, the centroid, also known as geometric center or center of figure, of a plane figure or solid figure is the arithmetic mean position of all the points in the surface of the figure. The same definition extends to any ...
; indeed, they are the only area bisectors that go through the centroid. Any line through a triangle that splits both the triangle's area and its perimeter in half goes through the triangle's incenter (the center of its
incircle In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter ...
). There are either one, two, or three of these for any given triangle. Any line through the midpoint of a parallelogram bisects the area. All area bisectors of a circle or other ellipse go through the center, and any
chords Chord may refer to: * Chord (music), an aggregate of musical pitches sounded simultaneously ** Guitar chord a chord played on a guitar, which has a particular tuning * Chord (geometry), a line segment joining two points on a curve * Chord ...
through the center bisect the area. In the case of a circle they are the diameters of the circle.


Optimization

Given a wire contour, the surface of least area spanning ("filling") it is a minimal surface. Familiar examples include soap bubbles. The question of the filling area of the
Riemannian circle In metric space theory and Riemannian geometry, the Riemannian circle is a great circle with a characteristic length. It is the circle equipped with the ''intrinsic'' Riemannian metric of a compact one-dimensional manifold of total length 2, or th ...
remains open. The circle has the largest area of any two-dimensional object having the same perimeter. A
cyclic polygon In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius. Not every polyg ...
(one inscribed in a circle) has the largest area of any polygon with a given number of sides of the same lengths. A version of the
isoperimetric inequality In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In n-dimensional space \R^n the inequality lower bounds the surface area or perimeter \operatorname(S) of a set S\subset\R^n ...
for triangles states that the triangle of greatest area among all those with a given perimeter is
equilateral In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each oth ...
. The triangle of largest area of all those inscribed in a given circle is equilateral; and the triangle of smallest area of all those circumscribed around a given circle is equilateral. The ratio of the area of the incircle to the area of an equilateral triangle, \frac, is larger than that of any non-equilateral triangle. The ratio of the area to the square of the perimeter of an equilateral triangle, \frac, is larger than that for any other triangle.Chakerian, G.D. (1979) "A Distorted View of Geometry." Ch. 7 in ''Mathematical Plums''. R. Honsberger (ed.). Washington, DC: Mathematical Association of America, p. 147.


See also

* Brahmagupta quadrilateral, a cyclic quadrilateral with integer sides, integer diagonals, and integer area. * Equiareal map * Heronian triangle, a triangle with integer sides and integer area. * List of triangle inequalities *
One-seventh area triangle In plane geometry, a triangle ''ABC'' contains a triangle having one-seventh of the area of ''ABC'', which is formed as follows: the sides of this triangle lie on cevians ''p, q, r'' where :''p'' connects ''A'' to a point on ''BC'' that is one-thi ...
, an inner triangle with one-seventh the area of the reference triangle. :* Routh's theorem, a generalization of the one-seventh area triangle. *
Orders of magnitude An order of magnitude is an approximation of the logarithm of a value relative to some contextually understood reference value, usually 10, interpreted as the base of the logarithm and the representative of values of magnitude one. Logarithmic di ...
—A list of areas by size. * Derivation of the formula of a pentagon * Planimeter, an instrument for measuring small areas, e.g. on maps. * Area of a convex quadrilateral * Robbins pentagon, a cyclic pentagon whose side lengths and area are all rational numbers.


References


External links

{{Authority control