Antimonene
   HOME

TheInfoList



OR:

In materials science, the term single-layer materials or 2D materials refers to crystalline solids consisting of a single layer of atoms. These materials are promising for some applications but remain the focus of research. Single-layer materials derived from single elements generally carry the -ene suffix in their names, e.g. graphene. Single-layer materials that are compounds of two or more elements have -ane or -ide suffixes. 2D materials can generally be categorized as either 2D allotropes of various elements or as compounds (consisting of two or more covalently bonding elements). It is predicted that there are hundreds of stable single-layer materials. The atomic structure and calculated basic properties of these and many other potentially synthesisable single-layer materials, can be found in computational databases. 2D materials can be produced using mainly two approaches: top-down exfoliation and bottom-up synthesis. The exfoliation methods include sonication, mechanical, hydrothermal, electrochemical, laser-assisted, and microwave-assisted exfoliation.


Single element materials


C: graphene and graphyne

;Graphene Graphene is a crystalline
allotrope Allotropy or allotropism () is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the ...
of carbon in the form of a nearly transparent (to visible light) one atom thick sheet. It is hundreds of times stronger than most
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
s by weight. It has the highest known thermal and electrical conductivity, displaying current densities 1,000,000 times that of copper. It was first produced in 2004.
Andre Geim , birth_date = , birth_place = Sochi, Russian SFSR, Soviet Union , death_date = , death_place = , workplaces = , nationality = Dutch and British , fields = Condensed matter physics ...
and Konstantin Novoselov won the 2010 Nobel Prize in Physics "for groundbreaking experiments regarding the two-dimensional material graphene". They first produced it by lifting graphene flakes from bulk graphite with adhesive tape and then transferring them onto a silicon wafer. ;Graphyne
Graphyne Graphyne is an allotrope of carbon. Its structure is one-atom-thick planar sheets of sp and sp2-bonded carbon atoms arranged in crystal lattice. It can be seen as a lattice of benzene rings connected by acetylene bonds. The material is called ...
is another 2-dimensional carbon allotrope whose structure is similar to graphene's. It can be seen as a lattice of benzene rings connected by
acetylene Acetylene (systematic name: ethyne) is the chemical compound with the formula and structure . It is a hydrocarbon and the simplest alkyne. This colorless gas is widely used as a fuel and a chemical building block. It is unstable in its pure ...
bonds. Depending on the content of the acetylene groups, graphyne can be considered a mixed
hybridization Hybridization (or hybridisation) may refer to: *Hybridization (biology), the process of combining different varieties of organisms to create a hybrid *Orbital hybridization, in chemistry, the mixing of atomic orbitals into new hybrid orbitals *Nu ...
, spn, where 1 < n < 2, compared to graphene (pure sp2) and diamond (pure sp3). First-principle calculations using phonon dispersion curves and
ab-initio ''Ab initio'' ( ) is a Latin term meaning "from the beginning" and is derived from the Latin ''ab'' ("from") + ''initio'', ablative singular of ''initium'' ("beginning"). Etymology Circa 1600, from Latin, literally "from the beginning", from ab ...
finite temperature, quantum mechanical molecular dynamics simulations showed graphyne and its boron nitride analogues to be stable. The existence of graphyne was conjectured before 1960. It has not yet been synthesized. However, graphdiyne (graphyne with
diacetylene Diacetylene (also known as butadiyne) is the organic compound with the formula C4H2. It is the simplest compound containing two triple bonds. It is first in the series of polyynes, which are of theoretical but not of practical interest. Occurr ...
groups) was synthesized on copper substrates. Recently, it has been claimed to be a competitor for graphene due to the potential of direction-dependent Dirac cones.


B: borophene

Borophene is a crystalline atomic
monolayer A monolayer is a single, closely packed layer of atoms, molecules, or cells. In some cases it is referred to as a self-assembled monolayer. Monolayers of layered crystals like graphene and molybdenum disulfide are generally called 2D materials. ...
of
boron Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the ''boron group'' it has th ...
and is also known as ''boron sheet''. First predicted by theory in the mid-1990s in a freestanding state, and then demonstrated as distinct monoatomic layers on substrates by Zhang et al., different borophene structures were experimentally confirmed in 2015.


Ge: germanene

Germanene Germanene is a material made up of a single layer of germanium atoms. The material is created in a process similar to that of silicene and graphene, in which high vacuum and high temperature are used to deposit a layer of germanium atoms on a sub ...
is a two-dimensional allotrope of
germanium Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors s ...
with a buckled honeycomb structure. Experimentally synthesized germanene exhibits a honeycomb structure. This honeycomb structure consists of two hexagonal sub-lattices that are vertically displaced by 0.2 A from each other.


Si: silicene

Silicene is a two-dimensional allotrope of silicon, with a hexagonal honeycomb structure similar to that of graphene. Its growth is scaffolded by a pervasive Si/Ag(111) surface alloy beneath the two-dimensional layer.


Sn: stanene

Stanene Stanene is a topological insulator, theoretically predicted by Prof. Shoucheng Zhang's group at Stanford, which may display dissipationless currents at its edges near room temperature. It is composed of tin atoms arranged in a single layer, in a ...
is a predicted topological insulator that may display dissipationless currents at its edges near
room temperature Colloquially, "room temperature" is a range of air temperatures that most people prefer for indoor settings. It feels comfortable to a person when they are wearing typical indoor clothing. Human comfort can extend beyond this range depending on ...
. It is composed of tin atoms arranged in a single layer, in a manner similar to graphene. Its buckled structure leads to high reactivity against common air pollutants such as NOx and COx and it is able to trap and dissociate them at low temperature. A structure determination of stanene using low energy electron diffraction has shown ultra-flat stanene on a Cu(111) surface.


Pb: plumbene

Plumbene Plumbene is a material made up of a single layer of lead atoms. The material is created in a process similar to that of graphene, silicene, germanene, and stanene, in which high vacuum and high temperature are used to deposit a layer of lead atoms ...
is a two-dimensional allotrope of lead, with a hexagonal honeycomb structure similar to that of graphene.


P: phosphorene

Phosphorene Phosphorene is a 2D materials, two-dimensional material consisting of phosphorus. It consists of a single layer of the artificially made layered black phosphorus, the most stable Allotropes of phosphorus, allotrope of phosphorus. The designation ...
is a 2-dimensional, crystalline allotrope of phosphorus. Its mono-atomic hexagonal structure makes it conceptually similar to graphene. However, phosphorene has substantially different electronic properties; in particular it possesses a nonzero band gap while displaying high electron mobility. This property potentially makes it a better semiconductor than graphene. The synthesis of phosphorene mainly consists of micromechanical cleavage or liquid phase exfoliation methods. The former has a low yield while the latter produce free standing nanosheets in solvent and not on the solid support. The bottom-up approaches like chemical vapor deposition (CVD) are still blank because of its high reactivity. Therefore, in the current scenario, the most effective method for large area fabrication of thin films of phosphorene consists of wet assembly techniques like Langmuir-Blodgett involving the assembly followed by deposition of nanosheets on solid supports.


Sb: antimonene

Antimonene is a two-dimensional allotrope of antimony, with its atoms arranged in a buckled honeycomb lattice. Theoretical calculations predicted that antimonene would be a stable semiconductor in ambient conditions with suitable performance for (opto)electronics. Antimonene was first isolated in 2016 by micromechanical exfoliation and it was found to be very stable under ambient conditions. Its properties make it also a good candidate for biomedical and energy applications. In a study made in 2018, antimonene modified screen-printed electrodes (SPE's) were subjected to a galvanostatic charge/discharge test using a two-electrode approach to characterize their supercapacitive properties. The best configuration observed, which contained 36 nanograms of antimonene in the SPE, showed a specific capacitance of 1578 F g−1 at a current of 14 A g−1. Over 10,000 of these galvanostatic cycles, the capacitance retention values drop to 65% initially after the first 800 cycles, but then remain between 65% and 63% for the remaining 9,200 cycles. The 36 ng antimonene/SPE system also showed an energy density of 20 mW h kg−1 and a power density of 4.8 kW kg−1. These supercapacitive properties indicate that antimonene is a promising electrode material for supercapacitor systems. A more recent study, concerning antimonene modified SPEs shows the inherent ability of antimonene layers to form electrochemically passivated layers to facilite electroanalytical measurements in oxygenated environments, in which the presence of dissolved oxygens normally hinders the analytical procedure. The same study also depicts the in-situ production of antimonene oxide/PEDOT:PSS nanocomposites as electrocatalytic platforms for the determination of nitroaromatic compounds.


Bi: bismuthene

Bismuthene, the two-dimensional (2D) allotrope of bismuth, was predicted to be a topological insulator. It was predicted that bismuthene retains its topological phase when grown on silicon carbide in 2015. The prediction was successfully realized and synthesized in 2016. At first glance the system is similar to graphene, as the Bi atoms arrange in a honeycomb lattice. However the bandgap is as large as 800mV due to the large spin–orbit interaction (coupling) of the Bi atoms and their interaction with the substrate. Thus, room-temperature applications of the quantum spin Hall effect come into reach. It has been reported to be the largest nontrivial bandgap 2D topological insulator in its natural state. Top-down exfoliation of bismuthene has been reported in various instances with recent works promoting the implementation of bismuthene in the field of electrochemical sensing. Emdadul et al. predicted the mechanical strength and phonon thermal conductivity of monolayer β-bismuthene through atomic-scale analysis. The obtained room temperature (300K) fracture strength is ~4.21 N/m along the armchair direction and ~4.22 N/m along the zigzag direction. At 300 K, its Young's moduli are reported to be ~26.1 N/m and ~25.5 N/m, respectively, along the armchair and zigzag directions. In addition, their predicted phonon thermal conductivity of ~1.3 W/m∙K at 300 K is considerably lower than other analogous 2D honeycombs, making it a promising material for thermoelectric operations.


Metals

Single and double atom layers of platinum in a two-dimensional film geometry has been demonstrated. These atomically thin platinum films are epitaxially grown on graphene which imposes a compressive strain that modifies the surface chemistry of the platinum, while also allowing charge transfer through the graphene. Single atom layers of palladium with the thickness down to 2.6 Å, and rhodium with the thickness of less than 4 Å have also been synthesized and characterized with atomic force microscopy and transmission electron microscopy.


2D alloys

Two-dimensional alloys (or surface alloys) are a single atomic layer of alloy that is incommensurate with the underlying substrate. One example is the 2D ordered alloys of Pb with Sn and with Bi. Surface alloys have been found to scaffold two-dimensional layers, as in the case of silicene.


2D supracrystals

The supracrystals of 2D materials have been proposed and theoretically simulated. These monolayer crystals are built of supra atomic periodic structures where atoms in the nodes of the lattice are replaced by symmetric complexes. For example, in the hexagonal structure of graphene patterns of 4 or 6 carbon atoms would be arranged hexagonally instead of single atoms, as the repeating node in the unit cell.


Compounds

* Boron nitride nanosheet *
Titanate nanosheet Titanate (IV) nanosheets (TiNSs) have a 2D structure where TiO6 octahedra are edge-linked in a lepidocrocite-type 2D lattice with chemical formula HxTi2—x/4☐x/4O4 ⦁ H2O (x~0.7; ☐, vacancy). Titanate nanosheets may be regarded as sheets wi ...
*
Borocarbonitrides Borocarbonitrides are two-dimensional compounds that contain boron, nitrogen, and carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or ...
*
MXenes In materials science, MXenes are a class of two-dimensional inorganic compounds , that consist of atomically thin layers of transition metal carbides, nitrides, or carbonitrides. MXenes accept a variety of hydrophilic terminations. MXenes were r ...
*
2D silica Two-dimensional silica (2D silica) is a layered polymorph of silicon dioxide. Two varieties of 2D silica, both of hexagonal crystal symmetry, have been grown so far on various metal substrates. One is based on SiO4 tetrahedra, which are covale ...
*
Niobium bromide Niobium bromide may refer to * Niobium(III) bromide. NbBr3 * Niobium(IV) bromide, NbBr4 * Niobium(V) bromide Niobium(V) bromide is the inorganic compound with the formula Nb2Br10. Its name comes from the compound's empirical formula, NbBr5. It ...
and
Niobium chloride Niobium chloride may refer to: * Niobium(IV) chloride (niobium tetrachloride), NbCl4 * Niobium(V) chloride (niobium pentachloride), NbCl5 Niobium compounds {{Short pages monitor